首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]连续,在(0,1)可导,f(0)=0,0<f’(x)<1(x∈(0,1)),求证: [∫01f(x)dx]2>∫01f3(x)dx.
设f(x)在[0,1]连续,在(0,1)可导,f(0)=0,0<f’(x)<1(x∈(0,1)),求证: [∫01f(x)dx]2>∫01f3(x)dx.
admin
2017-10-23
30
问题
设f(x)在[0,1]连续,在(0,1)可导,f(0)=0,0<f’(x)<1(x∈(0,1)),求证:
[∫
0
1
f(x)dx]
2
>∫
0
1
f
3
(x)dx.
选项
答案
即证[∫
0
1
f(x)dx]
2
一∫
0
1
f
3
(x)dx>0.考察F(x)=[∫
0
x
f(t)dt]
2
—∫
0
x
f
3
(t)dt, 若能证明F(x)>0(x∈(0,1])即可.这可用单调性方法. 令F(x)=[∫
0
x
f(t)dt]
2
一∫
0
x
f
3
(t)dt,易知F(x)在[0,1]可导,且 F(0)=0,F’(x)=f(x)[2∫
0
x
f(t)dt一f
2
(x)]. 由题设知f(x)在[0,1]单调上升,故f(x)>f(0)=0(x∈(0,1]),从而F’(x)与g(x)=2∫
0
x
f(t)dt一f
2
(x)同号.计算可得 g’(x)=2f(x)[1一f’(x)]>0(x∈(0,1)), 结合g(x)在[0,1]连续,于是g(x)在[0,1]单调上升,故g(x)>g(0)=0(x∈(0,1]),也就有F’(x)>0(x∈(0,1]),即F(x)在[0,1]单调上升,F(x)>F(0)=0(x∈(0,1]).因此 F(1)=[∫
0
1
f(x)dx]
2
一∫
0
1
f
3
(x)dx>0.
解析
转载请注明原文地址:https://kaotiyun.com/show/EsX4777K
0
考研数学三
相关试题推荐
设f(x)二阶连续可导,f’(0)=0,且,则().
设f(x)在[a,b]上满足|f"(x)|≤2,且f(x)在(a,b)内取到最小值.证明:|f’(a)|+|f’(b)|≤2(b一a).
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1),证明:存在ξ,η∈(0,1),使得f’(ξ)+f’(η)=0.
设f(x)=,且f’(0)存在,则a=__________,b=__________,c=__________
设f(x)为奇函数,且f’(1)=2,则=__________.
设f(x)可导,则当△x→0时,△y—dy是△x的().
求
求,其中D:x2+y2≤π2.
设f(x)连续,证明:
设f(x)在[a,b]上连续,且f(x)>0,证明:存在ξ∈(a,b),使得∫aξ(x)dx=∫ξbf(x)dx.
随机试题
Abouttwo-thirdsoftheworld’spopulationisexpectedtoliveincitiesbytheyear2020and,accordingtotheUnitedNations,
Mostpeopleagreethatthedirect,assertive(过分自信的)Americanpersonalityisavirtue,butitsometimessurprisesforeigners.In
休克引起重要器官继发性损害可导致()
用于智齿冠周炎冲洗的过氧化氢溶液浓度是
存款货币银行负债管理的主要内容有( )。
校园文化是影响学生发展的因素之一,属于隐性课程。()
重婚:有配偶而又与他人结婚,或者明知他人有配偶而与之结婚的行为。根据以上定义,下面哪一种是重婚?()
已定义以下函数:fun(int*p){return*P;}该函数的返回值是()。
Whetdoestheprofessormainlydiscuss?
ThemilitaryaspectoftheUnitedStatesCivilWarhasalwaysattractedthemostattentionfromscholars.Theroarofgunfire,t
最新回复
(
0
)