首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]连续,在(0,1)可导,f(0)=0,0<f’(x)<1(x∈(0,1)),求证: [∫01f(x)dx]2>∫01f3(x)dx.
设f(x)在[0,1]连续,在(0,1)可导,f(0)=0,0<f’(x)<1(x∈(0,1)),求证: [∫01f(x)dx]2>∫01f3(x)dx.
admin
2017-10-23
46
问题
设f(x)在[0,1]连续,在(0,1)可导,f(0)=0,0<f’(x)<1(x∈(0,1)),求证:
[∫
0
1
f(x)dx]
2
>∫
0
1
f
3
(x)dx.
选项
答案
即证[∫
0
1
f(x)dx]
2
一∫
0
1
f
3
(x)dx>0.考察F(x)=[∫
0
x
f(t)dt]
2
—∫
0
x
f
3
(t)dt, 若能证明F(x)>0(x∈(0,1])即可.这可用单调性方法. 令F(x)=[∫
0
x
f(t)dt]
2
一∫
0
x
f
3
(t)dt,易知F(x)在[0,1]可导,且 F(0)=0,F’(x)=f(x)[2∫
0
x
f(t)dt一f
2
(x)]. 由题设知f(x)在[0,1]单调上升,故f(x)>f(0)=0(x∈(0,1]),从而F’(x)与g(x)=2∫
0
x
f(t)dt一f
2
(x)同号.计算可得 g’(x)=2f(x)[1一f’(x)]>0(x∈(0,1)), 结合g(x)在[0,1]连续,于是g(x)在[0,1]单调上升,故g(x)>g(0)=0(x∈(0,1]),也就有F’(x)>0(x∈(0,1]),即F(x)在[0,1]单调上升,F(x)>F(0)=0(x∈(0,1]).因此 F(1)=[∫
0
1
f(x)dx]
2
一∫
0
1
f
3
(x)dx>0.
解析
转载请注明原文地址:https://kaotiyun.com/show/EsX4777K
0
考研数学三
相关试题推荐
设f(x)二阶连续可导,f’(0)=0,且,则().
设f(x)在[0,1]上二阶连续可导且f(0)=f(1),又|f"(x)|≤M,证明:|f"(x)|≤.
设b>a>0,证明:
设函数f(x)和g(x)在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=g(b)=0,g’(x)<0,试证明存在ξ∈(a,b)使
计算,其中D:x2+y2≤a2≥0,y≥0).
求,其中D:x2+y2≤π2.
设f(x)连续,证明:
证明:
设f(x)在[a,b]上连续,证明:∫abf(x)dx=∫abf(a+b—x)dx.
设f(x)在[a,b]上连续,且f(x)>0,证明:存在ξ∈(a,b),使得∫aξ(x)dx=∫ξbf(x)dx.
随机试题
A.第一级预防B.第二级预防C.第三级预防D.健康保健E.病因预防疾病三级预防策略.三早预防是
下列关于高排量型心力衰竭临床表现的叙述。正确的是
关于联合体投标,下列说法中不正确的是()。
行政处罚+行政强制+行政复议2009年6月,渡江市国家税务局稽查局(以下简称“稽查局”)对丰华公司进行日常税务检查。稽查局认为,该公司在税务检查期间不如实反映情况、拒不提供有关资料,并且存在不接受税务机关处理的行为,遂向该公司送达(渡国税稽停票[2009]
市场机制的核心机制是()。
ForgetCyclists,PedestriansareRealDangerWearehavingadebateaboutthistopic.Herearesomelettersfromourreaders.-
在观察精确性上有明显提高的阶段是小学()。
某蓄水池有一进水口A和一出水口B,池中无水时,打开A口关闭B口,加满整个蓄水池需2小时;池中满水时,打开B口关闭A口,放干池中水需1小时30分钟。现池中有占总容量1/3的水,问同时打开A、B口,需多长时间才能把蓄水池放干?()
如果在一台主机的Windows环境下执行命令Pingwww.pku.edu.cn得到下列信息Pingingwww.pku.edu.cn[162.105.131.113]with32bytesofdata:Requesttimedout.
TheDifferencesBetweenAmericanandBritishEnglishI.IntroductionAmericanEnglishandBritishEnglish:two【T1】______ofEngli
最新回复
(
0
)