首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(t)在[0,π]上连续,在(0,π)内可导,且∫0πf(χ)cosχdχ=∫0πf(χ)sinχdχ=0.证明:存在ξ∈(0,π),使得f′(ξ)=0.
设f(t)在[0,π]上连续,在(0,π)内可导,且∫0πf(χ)cosχdχ=∫0πf(χ)sinχdχ=0.证明:存在ξ∈(0,π),使得f′(ξ)=0.
admin
2019-04-22
49
问题
设f(t)在[0,π]上连续,在(0,π)内可导,且∫
0
π
f(χ)cosχdχ=∫
0
π
f(χ)sinχdχ=0.证明:存在ξ∈(0,π),使得f′(ξ)=0.
选项
答案
令F(χ)=∫
0
χ
f(t)sintdt,因为F(0)=F(χ)=0,所以存在χ
1
∈(0,π),使得F′(χ
1
)=0,即f(χ
1
)sinχ
1
=0,又因为sinχ
1
≠0,所以f(χ
1
)=0. 设χ
1
是f(χ)在(0,π)内唯一的零点,则当χ∈(0,π)且χ≠χ
1
时,有sin(χ-χ
1
)f(χ) 恒正或恒负,于是∫
0
π
sin(χ-χ
1
)f(χ)dχ≠0. 而∫
0
π
sin(χ-χ
1
)f(χ)dχ=cosχ
1
∫
0
π
f(χ)sinχdχ-sinχ
1
∫
0
π
f(χ)cosχdχ=0,矛盾, 所以f(χ)在(0,π)内至少有两个零点.不妨设f(χ
1
)=f(χ
2
)=0,χ
1
,χ
2
∈(0,π)且χ
1
<χ
2
, 由罗尔中值定理,存在ξ∈(χ
1
,χ
2
)[*](0,π),使得f′(ξ)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/EtV4777K
0
考研数学二
相关试题推荐
设f(x)连续且F(x)=为().
设f(x)=则f(x)在点x=0处
A、等价无穷小量B、同阶但非等价无穷小量C、高阶无穷小量D、低阶无穷小量B
设f(χ)=3χ2+Aχ-3(χ>0),A为正常数,问A至少为多少时,f(χ)≥20?
设y=y(χ)是一向上凸的连续曲线,其上任意一点(χ,y)处的曲率为,又此曲线上的点(0,1)处的切线方程为y=χ+1,求该曲线方程,并求函数y(χ)的极值.
设曲线L1与L2皆过点(1,1),曲线L1在点(χ,y)处纵坐标与横坐标之商的变化率为2,曲线L2在点(χ,y)处纵坐标与横坐标之积的变化率为2,求两曲线所围成区域的面积.
计算积分
设A为三阶方阵,A的每行元素之和为5,AX=0的通解为设β=,求Aβ.
设n阶实对称矩阵A的秩为r,且满足A2=A(A称为幂等阵).求:(1)二次型XTAX的标准形;(2)|E+A+A2+…+An|的值.
一半球形雪堆融化速度与半球的表面积成正比,比例系数为k>0,设融化过程中形状不变,设半径为r。的雪堆融化3小时后体积为原来的,求全部融化需要的时间.
随机试题
首次提出“隐性课程”这一概念的是()
下列无症状的胆囊疾病中,应早做手术的是
老年人给药剂量更应强调个体化的机制主要是()。
房地产开发项目可行性研究的内容最后,结论建议应包括()。
普通混凝土的强度等级是以具有95%保证率的( )d的标准尺寸立方体抗压强度代表值来确定的。
在项目清单的编制中,()是招标人认为可能发生的工程变更而预留的金额。
2012年12月16日,甲公司与乙公司签订了一项租赁协议,将一栋管理用写字楼出租给乙公司,租赁期为3年,租赁期开始日为2012年12月31日,年租金为240万元,于每年年初收取。相关资料如下:(1)2012年12月31日,甲公司将该写字楼停止自用,准备出
在职业活动中。所谓“理智信任”的意思是()。
每届现代奥运会都参加的国家有()。
A、 B、 C、 D、 A观察第一组图形,每个图形里面都有一个三角形,且前两个图形的外部轮廓的线条数之和为第三个图形的外部轮廓的线条数;第二组图形中,外边都有一个圆,前两个图形的内部线条数之和为第三个图形的内
最新回复
(
0
)