首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组B:b1…,r,能由向量组A:a1…,ar线性表示为(b1…,br)=(a1…,ar)K,其中K为s×r矩阵,且向量组A线性无关.证明向量组B线性无关的充分必要条件是矩阵K的秩r(K)=r.
设向量组B:b1…,r,能由向量组A:a1…,ar线性表示为(b1…,br)=(a1…,ar)K,其中K为s×r矩阵,且向量组A线性无关.证明向量组B线性无关的充分必要条件是矩阵K的秩r(K)=r.
admin
2019-05-11
70
问题
设向量组B:b
1
…,
r
,能由向量组A:a
1
…,a
r
线性表示为(b
1
…,b
r
)=(a
1
…,a
r
)K,其中K为s×r矩阵,且向量组A线性无关.证明向量组B线性无关的充分必要条件是矩阵K的秩r(K)=r.
选项
答案
必要性:令B=(b
1
…,b
r
),A=(a
s
…,a
s
),则有B=AK,由定理r(B)=r(AK)≤min{r(A),r(K)},结合向量组B:b
1
,b
2
,…,b
r
线性无关知r(B)=r,故r(K)≥r.又因为K为r×s阶矩阵,则有r(K)≤min{r,s}.且由向量组B:b
1
,b
2
,…,b
r
能由向量组A:a
1
,a
2
,…,a
s
线性表示,有r≤S,即min{r,s}=r.综上所述,r≤r(K)≤r,即r(K)=r.充分性:已知r(K)=r,向量组A线性无关,r(A)=s,因此A的行最简矩阵为[*],存在可逆矩阵P使[*]于是有[*]由矩阵秩的性质[*]即r(B)=r(K)=r,因此向量组B线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/EwV4777K
0
考研数学二
相关试题推荐
设y=y(χ)由方程ey+6χy+χ2-1=0确定,求y〞(0).
求微分方程的通解.
设b>a>0,证明:.
设A是m×n矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下面结论正确的是()
计算行列式
设函数f(μ)可导,y=f(x2)当自变量x在x=一1处取得增量△x=一0.1时,相应的函数增量△y的线性主部为0.1,则f’(1)等于()
某试验性生产线每年1月份进行熟练工与非熟练工的人数统计,然后将熟练工支援其他生产部门,其缺额由招收新的非熟练工补齐。新、老非熟练工经过培训及实践至年终考核有成为熟练工。设第n年1月份统计的熟练工与非熟练工所占百分比分别为xn和yn,记成向量。求的关系式
设。计算行列式|A|;
设函数f(x)=lnx+(Ⅰ)求f(x)的最小值;(Ⅱ)设数列{xn}满足lnxn+<1,证明xn存在,并求此极限。
一半径为R的球沉入水中,球面顶部正好与水面相切,球的密度为1,求将球从水中取出所做的功.
随机试题
A.中枢性尿崩症B.生长激素缺乏症C.先天性甲状腺功能减低症D.先天性肾上腺皮质增生症E.儿童糖尿病女孩,9岁半。多饮、多尿,人渐消瘦1个月,近2天发热、咳嗽。空腹血糖17.5mmol/L,尿酮体阴性,pH:7.28,BE:一8.0mmol/L
压弯U形制件要比V形制件的回弹小些。
勘探开发对油气井完井的共同要求是克服井塌或油层出砂,保障油气井长期稳产,延长生产期。()
计算机动画是用计算机生成一系列可供实时连续播放的连续静态画面的技术,可在计算机屏幕上动态演示,也可转换成电视或电影输出。()
A.1940sB.1950sC.1970sD.1990sE.2000s靶向治疗作为近代肿瘤内科治疗的里程碑发生在
关于自动冲洗机启动液的叙述,错误的是
肺主通调水道,主要依赖于肺的哪项功能
下列选项中不具有行政主体资格的是()
VisitingU.S.PresidentGeorgeW.BushsaidinBeijingFridaythatbothChinaandtheUnitedStatesshouldencouragebilateral
根据以下资料,回答问题。2012年前三季度,河南省固定资产投资是山西省的:
最新回复
(
0
)