首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(χ1,χ2,χ3)=χ12+aχ22+χ32+2χ1χ2-2χ2χ3-2aχ1χ3的正、负惯性指数都是1. (Ⅰ)计算a的值; (Ⅱ)用正交变换将二次型化为标准形; (Ⅲ)当χ满足χTχ=2时,求f的最大值与最小值.
设二次型f(χ1,χ2,χ3)=χ12+aχ22+χ32+2χ1χ2-2χ2χ3-2aχ1χ3的正、负惯性指数都是1. (Ⅰ)计算a的值; (Ⅱ)用正交变换将二次型化为标准形; (Ⅲ)当χ满足χTχ=2时,求f的最大值与最小值.
admin
2017-11-09
81
问题
设二次型f(χ
1
,χ
2
,χ
3
)=χ
1
2
+aχ
2
2
+χ
3
2
+2χ
1
χ
2
-2χ
2
χ
3
-2aχ
1
χ
3
的正、负惯性指数都是1.
(Ⅰ)计算a的值;
(Ⅱ)用正交变换将二次型化为标准形;
(Ⅲ)当χ满足χ
T
χ=2时,求f的最大值与最小值.
选项
答案
(Ⅰ)二次型的矩阵为A=[*],则二次型的正、负惯性指数都是1,可知R(A)=2, |A|=[*]=(a+2)(a-1)
2
=0, 所以a=-2,或a=1,又a=1时,显然R(A)=1,故只取a=-2. (Ⅱ)此时|λE-A|=λ(λ+3)(λ-3),所以A的特征值是3,-3,0. 当λ
1
=3时,解方程组(3E-A)χ=0,得基础解系为α
1
=(1,0,1)
T
; 当λ
2
=-3时,解方程组(-3E-A)χ=0,得基础解系为α
2
=(1,-2,-1)
T
; 当λ
2
=0时,解方程组(0E-A)χ=0,得基础解系为α
3
=(1,1,-1)
T
. 将α
1
,α
2
,α
3
单位化得 [*] 因此所求的正交变换为 [*] 所求的标准形为3y
1
2
-3y
2
2
. (Ⅲ)由于χ=Qy,可知χ
T
χ=(Qy)
T
Qy=y
T
Q
T
Qy=y
T
y.因此限制条件χ
T
χ=2也等价于y
T
y=y
1
2
+y
2
2
+y
3
2
=2. 由于二次型为3y
1
2
-3y
2
2
, 易知其在y
1
2
y
2
2
y
3
2
=2时,最大值为6,最小值为-6.
解析
转载请注明原文地址:https://kaotiyun.com/show/F6X4777K
0
考研数学三
相关试题推荐
设f(x)在(一∞,+∞)上可导,,则a=________.
A=,求a,b及可逆矩阵P,使得P-1AP=B.
设A,B,C,D都是n阶矩阵,r(CA+DB)=n.(1)证明=n;(2)设ξ1,ξ2,…,ξr与η1,η2,…,ηs分别为方程组AX=0与BX=0的基础解系,证明:ξ1,ξ2,…,ξr,η1,η2,…,ηs线性无关.
设0<k<1,f(x)=kx—arctanx.证明:f(x)在(0,+∞)中有唯一的零点,即存在唯一的x0∈(0,+∞),使f(x1)=0.
计算(a>0是常数).
随机地取两个正数x和y,这两个数中的每一个都不超过1,试求x与y之和不超过1,积不小于0.09的概率.
设f(x)在[0,+∞)上连续,0<a<b,且收敛,其中常数A>0.证明:
求微分方程(4一x+y)dx一(2一x—y)dy=0的通解.
设(X,Y)服从G={(x,y)|x2+y2≤1}上的均匀分布,试求给定Y=y的条件下X的条件概率密度函数fX|Y(x|y).
随机试题
将人体分为左右对称两部分的面为
片剂常用的黏合剂是
心肌梗死常发生于()。
胡某乃一赌徒,嗜赌如命,某日赌博输钱之后,来到其叔父家里,向其叔父提出要借1万元钱,但是,由于其叔父知道胡某的为人,于是不同意借给他,就在此时,一个5岁的小女孩进屋,向胡某叔父说:“外公,我要一块钱买雪糕吃。”胡某随即抱起小女孩,并且从口袋里掏出匕首,然后
某施工企业采取溢价发行股票时,所取得的股票发行收入超过股票价值800万元,则该项收入应作为企业的()处理。
PreferredCustomerCardApplicationProcedurePleasecompletetheattachedformatleasttwoweekspriortoyournextvi
—Thisdigitalcameraisreallycheap!—The______thebetter.I’mshortofmoney,yousee.
设a=10,b=4,c=5,d=7,表达式a>bAndNotc<d+6的值为()。
It’s______ofyoutohelpmewithmyEnglish.
It’saroughworldoutthere.Stepoutsideandyoucouldbreakalegslippingonyourdoormat.Lightupthestoveandyoucould
最新回复
(
0
)