首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(χ1,χ2,χ3)=χ12+aχ22+χ32+2χ1χ2-2χ2χ3-2aχ1χ3的正、负惯性指数都是1. (Ⅰ)计算a的值; (Ⅱ)用正交变换将二次型化为标准形; (Ⅲ)当χ满足χTχ=2时,求f的最大值与最小值.
设二次型f(χ1,χ2,χ3)=χ12+aχ22+χ32+2χ1χ2-2χ2χ3-2aχ1χ3的正、负惯性指数都是1. (Ⅰ)计算a的值; (Ⅱ)用正交变换将二次型化为标准形; (Ⅲ)当χ满足χTχ=2时,求f的最大值与最小值.
admin
2017-11-09
69
问题
设二次型f(χ
1
,χ
2
,χ
3
)=χ
1
2
+aχ
2
2
+χ
3
2
+2χ
1
χ
2
-2χ
2
χ
3
-2aχ
1
χ
3
的正、负惯性指数都是1.
(Ⅰ)计算a的值;
(Ⅱ)用正交变换将二次型化为标准形;
(Ⅲ)当χ满足χ
T
χ=2时,求f的最大值与最小值.
选项
答案
(Ⅰ)二次型的矩阵为A=[*],则二次型的正、负惯性指数都是1,可知R(A)=2, |A|=[*]=(a+2)(a-1)
2
=0, 所以a=-2,或a=1,又a=1时,显然R(A)=1,故只取a=-2. (Ⅱ)此时|λE-A|=λ(λ+3)(λ-3),所以A的特征值是3,-3,0. 当λ
1
=3时,解方程组(3E-A)χ=0,得基础解系为α
1
=(1,0,1)
T
; 当λ
2
=-3时,解方程组(-3E-A)χ=0,得基础解系为α
2
=(1,-2,-1)
T
; 当λ
2
=0时,解方程组(0E-A)χ=0,得基础解系为α
3
=(1,1,-1)
T
. 将α
1
,α
2
,α
3
单位化得 [*] 因此所求的正交变换为 [*] 所求的标准形为3y
1
2
-3y
2
2
. (Ⅲ)由于χ=Qy,可知χ
T
χ=(Qy)
T
Qy=y
T
Q
T
Qy=y
T
y.因此限制条件χ
T
χ=2也等价于y
T
y=y
1
2
+y
2
2
+y
3
2
=2. 由于二次型为3y
1
2
-3y
2
2
, 易知其在y
1
2
y
2
2
y
3
2
=2时,最大值为6,最小值为-6.
解析
转载请注明原文地址:https://kaotiyun.com/show/F6X4777K
0
考研数学三
相关试题推荐
求幂级数的和函数.
求函数f(x)=ln(1一x一2x2)的幂级数,并求出该幂级数的收敛域.
某集邮爱好者有一个珍品邮票,如果现在(t=0)就出售,总收入为R0元,如果收藏起来待来日出售,t年末总收入为R(t)=R0eξ(t),其中ξ(t)为随机变量,服从正态分布,假定银行年利率为r,并且以连续复利计息,试求收藏多少年后,再出售可使得总收入的期望现
设二维随机变量(X,Y)在上服从均匀分布,则条件概率=________.
计算二重积分,其中D是第一象限中由直线y=x和曲线y=x3所围成的封闭区域.
甲、乙两人比赛射击,每个射击回合中取胜者得1分,假设每个射击回合中,甲胜的概率为α,乙胜的概率为β(α+β=1),比赛进行到一人比另一人多2分为止,多2分者最终获胜.求甲、乙最终获胜的概率.比赛是否有可能无限地一直进行下去?
求微分方程(4一x+y)dx一(2一x—y)dy=0的通解.
设(X,Y)服从G={(x,y)|x2+y2≤1}上的均匀分布,试求给定Y=y的条件下X的条件概率密度函数fX|Y(x|y).
求方程karctanx一x=0不同实根的个数,其中k为参数.
随机试题
女,45岁。突发剑突下绞痛,局部压痛,肌紧张,伴寒战、高热,黄疸12小时。该患者首选的治疗原则是
药品生产企业终止生产药品或者关闭的,《药品生产许可证》
下列有关含氯消毒剂的使用方法正确的是
A、 B、 C、 D、 E、 C
房室瓣关闭主要是由于
“孟母三迁”体现的德育方法是()
行政处罚包括以下形式()。
题干可以转换成()。
赶路的人,为了远方的目标,无意留心沿路的风光。许多其实并不比你追寻的东西逊色的路边风物,被你轻易地忽略过去了,待我们多年后明白过来时,已追悔莫及,而当你把赶路的心态转换成散步的心态,你就会发觉,得到有味,失去也有味;富有有味,清贫也自有味,失败也有味;热恋
设tany=x+y,则dy=________.
最新回复
(
0
)