首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A为n(n≥3)阶非零实矩阵,Aij为A中元素aij的代数余子式,证明: (I)aij=AijATA=E,且|A|=1; (II)aij=一AijATA=E,且|A|=一1。
已知A为n(n≥3)阶非零实矩阵,Aij为A中元素aij的代数余子式,证明: (I)aij=AijATA=E,且|A|=1; (II)aij=一AijATA=E,且|A|=一1。
admin
2017-01-13
43
问题
已知A为n(n≥3)阶非零实矩阵,A
ij
为A中元素a
ij
的代数余子式,证明:
(I)a
ij
=A
ij
A
T
A=E,且|A|=1;
(II)a
ij
=一A
ij
A
T
A=E,且|A|=一1。
选项
答案
(I)当a
ij
=A
ij
时,有A
T
=A
*
,则A
T
A=A
*
A=|A|E。由于A为n阶非零实矩阵(a
ij
不全为零),所以[*],而tr(A
T
A)=tr(|A|E)=n|A|,故|A|>0.在A
T
A =|A|E两边取行列式,得|A|
n-2
=1,从而|A|=1。 反之,若A
T
A=E且|A|=1,则A
*
A=|A|E=A
T
A,于是A
T
=A
*
,即a
ij
=A
ij
(Ⅱ)当a
ij
=一A
ij
时,有A
T
=一A
*
,则A
T
A=一A
*
A=一|A|E,此时n|A|=tr(一A
T
A)=一[*],即|A|<0.即A
T
A=一|A|E两边取行列式,得|A|=一1。 反之,若A
T
A=E且|A|=一1,则A
*
A=|A|E=一E=一A
T
A=(一A
T
)A,于是A
T
=一A
*
,即a
ij
=一A
ij
。
解析
转载请注明原文地址:https://kaotiyun.com/show/FCt4777K
0
考研数学二
相关试题推荐
设函数f(u)在(0,+∞)内具有二阶导数,且z=满足等式若f(1)=0,f’(1)=1,求函数f(u)的表达式。
设z=z(x,y)是由方程=________。
求幂级数的收敛域,并求其和函数。
求下列函数的偏导数。z=lnsin(x-2y)
设函数u=f(x,y,z)有连续偏导数,且z=z(x,y)由方程xex-yey=zex所确定,求du。
设f(u,v)具有二阶连续偏导数,且满足,又g(x,y)=f[xy,(x2-y2)]求
设k>0,讨论常数k的取值,使f(x)=xlnx+k在其定义域内没有零点、有一个零点及两个零点.
微分方程y’+ytanx=cosx的通解为________。
设y=y(x)是二阶常系数微分方程y"+py’+qy=e3x满足初始条件y(0)=y’(0)=0的特解,则当x→0时,函数的极限是________。
指出下列各题中的函数是否为所给微分方程的解。y"-2y’+y=0,y=x2ex
随机试题
消费者在购买、使用商品和接受服务时享有()不受损害的权利。
绝大多数真核生物mRNA54端有()。
患儿,男性,3岁。上楼梯时,其母亲向上牵拉右上肢,患儿哭叫,诉肘部疼痛,不肯用右手取物,最可能的诊断是
下列设备中,属于有线电视系统设备的是()。
地陪首次沿途导游的主要内容是()。
对流出员工的跟踪调查可以由()来完成。
根据《治安管理处罚法》的规定,违反治安管理的行为主要由( )构成。
求学者如果孜孜于衣食居住的安适,一定谈不上好学。同样,好学的目的也不是为了__________,心灵之养甚于居养之安。学习的目的是成为“有道”之人,名闻利养并非先务。这不是__________物质,而是强调学习就是学习,不要附带上物质目的。填入划横线部分最
①然而,它们却不仅没有患上糖尿病或者高血压等代谢疾病②反而可以在缺水乏食、昼夜温差极大的沙漠中生存下来,成为“沙漠之舟”③它们生存在环境最恶劣的沙漠和半沙漠地区,每餐食用大量食盐.并摄取大量脂肪④在古老的丝绸之路上,双峰骆驼曾是中西贸易文化交流的使者
设x→0时ax2+bx+c—cosx是比x2高阶的无穷小,其中a,b,c为常数,则()
最新回复
(
0
)