首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知n维向量α1,α2,…,αs线性无关,如果n维向量β不能由α1,α2,…,αs线性表出,而γ可由α1,α2,…,αs线性表出,证明α1,α1+α2,α2+α3,…,αs-1+αs,β+γ线性无关.
已知n维向量α1,α2,…,αs线性无关,如果n维向量β不能由α1,α2,…,αs线性表出,而γ可由α1,α2,…,αs线性表出,证明α1,α1+α2,α2+α3,…,αs-1+αs,β+γ线性无关.
admin
2016-11-03
49
问题
已知n维向量α
1
,α
2
,…,α
s
线性无关,如果n维向量β不能由α
1
,α
2
,…,α
s
线性表出,而γ可由α
1
,α
2
,…,α
s
线性表出,证明α
1
,α
1
+α
2
,α
2
+α
3
,…,α
s-1
+α
s
,β+γ线性无关.
选项
答案
利用拆项重组法及线性无关的定义证之. 由题设γ可由α
1
,α
2
,…,α
s
线性表出,可设 γ=c
1
α
1
+c
2
α
2
+…+c
s
α
s
, 又令 k
1
α
1
+k
2
(α
1
+α
2
)+…+k
s
(α
s
+α
s-1
)+k(β+γ)=0. 将其拆项重组得到 (k
1
+k
2
+kc
1
)α
1
+(k
2
+k
3
+kc
2
)α
2
+…+(k
s
+kc
s
)α
s
+kβ=0. 因α
1
,α
2
,…,α
s
线性无关,而β不能由α
1
,α
2
,…,α
s
线性表出,故α
1
,α
2
,…,α
s
,β线性无关.因而 k=0, k
1
+k
2
+kc
1
=0, k
2
+k
3
+kc
2
=0, …,k
s
+kc
s
=0, 即 k
1
+k
2
=0,k
2
+k
3
=0,…,k
s-1
+k
s
=0,k
s
=0, 解得 k
1
=k
2
=…=k
s-1
=k
s
=0, 即α
1
,α
1
+α
2
,α
2
+α
3
,…,α
s-1
+α
s
,β+γ线性无关.
解析
利用线性无关的定义证之,也可用矩阵表示法证之.
转载请注明原文地址:https://kaotiyun.com/show/FHu4777K
0
考研数学一
相关试题推荐
设随机变量X的绝对值不大于1,P(X=1)=1/4,P(X=-1)=1/8,而在事件{-1
已知y=x2+a与y=b㏑(1+2x)在x=1点相切(两曲线在(x。,y。)处相切是指它们在(x。,y。)处有共同切线),求a,b的值.
若α1,α2,α3,β1,β2都是4维列向量,且4阶行列式丨α1,α2,α3,β1丨=m,丨α1,α2,β2,α3丨=n,则4阶行列式丨α3,α2,α1,β1+β2丨=__________.
设A为n(n≥2)阶可逆矩阵,交换A的第1行与第2行得矩阵B,A*,B*分别为A,B的伴随矩阵,则
曲面x2+2y2+3z2=21在点(1,-2,2)的法线方程为____________.
设函数f(x)具有二阶连续导数,且f(x)>0,f’(0)=0,则函数z=f(x)lnf(y)在点(0,0)处取得极小值的一个充分条件是
设周期函数f(x,y)在(-∞,+∞)内可导,周期为4,又则曲线y=f(x)在点(5f(5))处的切线的斜率为().
设f(x,y)为区域D内的函数,则下列各种说法中不正确的是().
设矩阵,且|A|=-1.又设A的伴随矩阵A*有特征值λ0,属于λ0的特征向量为a=(-1,-1,1)T,求a,b,c及λ0的值.
随机试题
某企业2008年4月12日被工商局吊销营业执照,则该企业应该在( )之前(含本日),办理注销税务登记。
物流目标优化的对象有两个,它们是()和()。
A.从胸走手B.从手走头C.从头走足D.从足走腹E.从头走足十二经脉的走向规律中,足三阴经的走向是()。
患者,男性,45岁,下腹部被车撞伤6小时,未排尿。入院后神志清楚,精神差,面色苍白,四肢冰凉,血压69/45mmHg,心率133次/分,查体:耻骨联合处压痛,挤压试验阳性,膀胱充盈。
城市分区规划应当依据已经依法批准的()进行编制。
在Exeel2003窗口中.状态栏可以显示单元格格式、功能键开关状态。()
下列属于水溶性维生素的是()。
设将n(n>1)个整数存放到一维数组R中。试设计一个在时间和空间两方面都尽可能高效的算法。将R中保存的序列循环左移p(0<p<n)个位置,即将R中的数据由(X0,X1,…,Xn-1)变换为(Xp,Xp+1,…Xn-1,X0,X1,…,Xp-1)。要求:
所有权属于()。
阅读下列说明和图,回答问题1至问题3,将解答填入答题纸的对应栏内。【说明】某学校的教学系统描述如下:学生信息包括:学号(Sno)、姓名(Sname)、性别(Ssex)、年龄(Sage)、入学年份(Syear)、主修专业(Smajor),其中学号是入学
最新回复
(
0
)