首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知n维向量α1,α2,…,αs线性无关,如果n维向量β不能由α1,α2,…,αs线性表出,而γ可由α1,α2,…,αs线性表出,证明α1,α1+α2,α2+α3,…,αs-1+αs,β+γ线性无关.
已知n维向量α1,α2,…,αs线性无关,如果n维向量β不能由α1,α2,…,αs线性表出,而γ可由α1,α2,…,αs线性表出,证明α1,α1+α2,α2+α3,…,αs-1+αs,β+γ线性无关.
admin
2016-11-03
59
问题
已知n维向量α
1
,α
2
,…,α
s
线性无关,如果n维向量β不能由α
1
,α
2
,…,α
s
线性表出,而γ可由α
1
,α
2
,…,α
s
线性表出,证明α
1
,α
1
+α
2
,α
2
+α
3
,…,α
s-1
+α
s
,β+γ线性无关.
选项
答案
利用拆项重组法及线性无关的定义证之. 由题设γ可由α
1
,α
2
,…,α
s
线性表出,可设 γ=c
1
α
1
+c
2
α
2
+…+c
s
α
s
, 又令 k
1
α
1
+k
2
(α
1
+α
2
)+…+k
s
(α
s
+α
s-1
)+k(β+γ)=0. 将其拆项重组得到 (k
1
+k
2
+kc
1
)α
1
+(k
2
+k
3
+kc
2
)α
2
+…+(k
s
+kc
s
)α
s
+kβ=0. 因α
1
,α
2
,…,α
s
线性无关,而β不能由α
1
,α
2
,…,α
s
线性表出,故α
1
,α
2
,…,α
s
,β线性无关.因而 k=0, k
1
+k
2
+kc
1
=0, k
2
+k
3
+kc
2
=0, …,k
s
+kc
s
=0, 即 k
1
+k
2
=0,k
2
+k
3
=0,…,k
s-1
+k
s
=0,k
s
=0, 解得 k
1
=k
2
=…=k
s-1
=k
s
=0, 即α
1
,α
1
+α
2
,α
2
+α
3
,…,α
s-1
+α
s
,β+γ线性无关.
解析
利用线性无关的定义证之,也可用矩阵表示法证之.
转载请注明原文地址:https://kaotiyun.com/show/FHu4777K
0
考研数学一
相关试题推荐
设A是m×n矩阵,B是n×m矩阵,则齐次线性方程组ABX=O().
求的(n+1)阶麦克劳林公式(带皮亚诺型余项).
证明:(1)周长一定的矩形中,正方形的面积最大;(2)面积一定的矩形中,正方形的周长最小。
曲面x2+2y2+3z2=21在点(1,-2,2)的法线方程为____________.
设向量α1,α2,...,αt是齐次方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
设随机变量X服从正态分布N(μ,σ2)(σ>0),且二次方程y2+4y+X=0无实根的概率为1/2,则μ=___________.
已知齐次线性方程组其中,试讨论a1,a2,…,an和b满足何种关系时,(Ⅰ)方程组仅有零解;(Ⅱ)方程组有非零解,在有非零解时,求此方程组的一个基础解系.
已知A是2×4矩阵,齐次方程组Ax=0的基础解系是η1=(1,3,0,2)T,η2=(1,2,一1,3)T,又知齐次方程组Bx=0的基础解系是β1=(1,1,2,1)T,β2=(0,一3,1,a)T,如果齐次线性方程组Ax=0与Bx=0有非零公共解,求
微分方程满足初始条件的特解是____________.
(2009年)计算曲面积分其中∑是曲面2x2+2y2+z2=4的外侧。
随机试题
4∶3∶2(2/3张)混合液的组成是
中龋的临床表现为
下列哪些案件适用简易程序审理是错误的?
查处统计违法案件的程序为( )。
关于基本分析法的主要内容,下列说法不正确的是()。
下列关于集中化战略的表述错误的是()。
工作:收入:消费
WalkaQuarter-MileorDieIfyoucanwalkaquarter-mile,odds(可能性)areyouhaveatleastsixyearsoflifeleftinyou,sc
Ford1Ford’sgreatstrengthwasthemanufacturingprocess—notinvention.Longbeforehestartedacarcompany,hewasaworker
Peopletendtobemoreimpressedbyevidencethatseemstoconfirmsomerelationship.Thusmanyare【B1】______theirdreamsarepr
最新回复
(
0
)