首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
f(x)在[0,1]上有连续导数,且f(0)=0.证明:存在一点ξ∈[0,1],使得 f’(ξ)=2∫01f(x)dx.
f(x)在[0,1]上有连续导数,且f(0)=0.证明:存在一点ξ∈[0,1],使得 f’(ξ)=2∫01f(x)dx.
admin
2018-09-20
89
问题
f(x)在[0,1]上有连续导数,且f(0)=0.证明:存在一点ξ∈[0,1],使得
f’(ξ)=2∫
0
1
f(x)dx.
选项
答案
因为f’(x)在[0,1]上连续,所以f’(x)在[0,1]上有最小值和最大值,设为m,M,即存在x
1
,x
2
∈[0,1],使f’(x
1
)=m,f’(x
2
)=M: 由拉格朗日中值定理,对任意x∈[0,1],存在η∈(0,x),使f(x)=f(x)-f(0)=f’(η)x,于是有 f’(x
1
)x=mx≤f(x)=f(x)一f(0)=f’(η)x≤Mx=f’(x
2
)x, 两边积分得 f’(x
1
)∫
0
1
xdx≤∫
0
1
f(x)dx≤f’(x
2
)∫
0
1
xdx, 即[*]f’(x
1
)≤∫
0
1
f(x)dx≤[*]f’(x
2
),故f’(x
1
)≤2∫
0
1
f(x)dx≤f’(x
2
). 因为f’(x)在[0,1]上连续,由介值定理,必存在ξ∈[x
1
,x
2
][*][0,1],或ξ∈[x
2
,x
1
][*][0,1],使 f’(ξ)=2∫
0
1
f(x)dx.
解析
转载请注明原文地址:https://kaotiyun.com/show/FNW4777K
0
考研数学三
相关试题推荐
设f’(x)在[0,1]上连续,且f(1)一f(0)=1.证明:f’2(x)dx≥1.
设f’(x)在[0,1]上连续且|f’(x)|≤M.证明:|∫01f(x)dx一
设f(x)在[a,b]上连续且单调减少.证明:当0<k<1时,∫0kf(x)dx≥k∫01f(x)dx.
设f(x)在[0,1]上连续,且0<m≤f(x)≤M,对任意的x∈[0,1],证明:
设f(x)有界,且f’(x)连续,对任意的x∈(一∞,+∞)有|f(x)+f’(x)|≤1.证明:|f(x)|≤1.
设S(x)=∫0x|cost|dt.证明:当nπ≤x<(n+1)π时,2n≤S(x)<2(n+1);
证明:(1)设an>0,且{nan}有界,则级数an2收敛;(2)若n2an=k>0,则级数an收敛.
设{nan}收敛,且n(an一an一1)收敛,证明:级数an收敛.
随机试题
经常被分析,非常重要的三类国际收支差额是_________________、_________________。
在一个典型的企业中,运作领域往往集中了投资的()
套期保值
在中文Windows2000中,可以使用不超过_______个字符来命名文件。
高血压心脏早期超声表现中很少见的是
A.易热 B.易寒 C.易虚 D.易实 E.易愈小儿具有“稚阴未长”的特点,患病
“固定资产”账户期末余额减去“累计折旧”账户期末余额,表示现有固定资产的()。
Mr.Whiteworksinanoffice.Helikedreadinginbedwhenhewasatschool.Itwasbadforhiseyesandnowhehasnearsight(
剥脱性牙龈病损中最少见的疾病是()。
Inthispart,youarerequiredtowriteacompositionentitledOnNoisePollutioninnolessthan200words.Yourcompositionsh
最新回复
(
0
)