首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
f(x)在[0,1]上有连续导数,且f(0)=0.证明:存在一点ξ∈[0,1],使得 f’(ξ)=2∫01f(x)dx.
f(x)在[0,1]上有连续导数,且f(0)=0.证明:存在一点ξ∈[0,1],使得 f’(ξ)=2∫01f(x)dx.
admin
2018-09-20
59
问题
f(x)在[0,1]上有连续导数,且f(0)=0.证明:存在一点ξ∈[0,1],使得
f’(ξ)=2∫
0
1
f(x)dx.
选项
答案
因为f’(x)在[0,1]上连续,所以f’(x)在[0,1]上有最小值和最大值,设为m,M,即存在x
1
,x
2
∈[0,1],使f’(x
1
)=m,f’(x
2
)=M: 由拉格朗日中值定理,对任意x∈[0,1],存在η∈(0,x),使f(x)=f(x)-f(0)=f’(η)x,于是有 f’(x
1
)x=mx≤f(x)=f(x)一f(0)=f’(η)x≤Mx=f’(x
2
)x, 两边积分得 f’(x
1
)∫
0
1
xdx≤∫
0
1
f(x)dx≤f’(x
2
)∫
0
1
xdx, 即[*]f’(x
1
)≤∫
0
1
f(x)dx≤[*]f’(x
2
),故f’(x
1
)≤2∫
0
1
f(x)dx≤f’(x
2
). 因为f’(x)在[0,1]上连续,由介值定理,必存在ξ∈[x
1
,x
2
][*][0,1],或ξ∈[x
2
,x
1
][*][0,1],使 f’(ξ)=2∫
0
1
f(x)dx.
解析
转载请注明原文地址:https://kaotiyun.com/show/FNW4777K
0
考研数学三
相关试题推荐
设f’(x)在[0,1]上连续,且f(1)一f(0)=1.证明:f’2(x)dx≥1.
设f’(x)在[0,1]上连续且|f’(x)|≤M.证明:|∫01f(x)dx一
设f(x)在[a,b]上连续且单调减少.证明:当0<k<1时,∫0kf(x)dx≥k∫01f(x)dx.
设f(x)在[a,b]上连续且单调增加,证明:∫abxf(x)dx≥∫abf(x)dx.
设f(x)在(一a,a)(a>0)内连续,且f’(0)=2.证明:对0<x<a,存在0<0<1,使得∫0xf(t)dt+∫0xf(t)dt=x[f(θx)一f(一θx)];
设S(x)=∫0x|cost|dt.证明:求
设S(x)=∫0x|cost|dt.证明:当nπ≤x<(n+1)π时,2n≤S(x)<2(n+1);
证明:(1)设an>0,且{nan}有界,则级数an2收敛;(2)若n2an=k>0,则级数an收敛.
随机试题
脊柱血管瘤多见于
拟诊应考虑哪项治疗最合理
患者李某,男,60岁,诊断为原发性肝癌,下列哪项检查指标最有参考价值
患者,女,8岁。壮热不恶寒3天,体温常午后升高,夜间高于白天,烦躁时有谵语,舌红绛,脉细数滑。宜首选
下列关于房地产投资分析中成本的表述中,正确的是()。[2006年考题]
国际标准化组织(ISO)结合实践经验及理论分析,用高度概括又易于理解的语言,总结的质量管理的原则包括()。
不少学校开展“校园明星”评选活动,这里所使用的德育方法是()。
()表示在一定时期内,一种商品的需求量的相对变化对于该商品价格相对运动的反应程度。
(1)我们要耐心教育孩子,不要_______他们的自尊心。(2)时至今日,语言文字的_______仍然存在混乱现象。(3)我仿佛窥见鲁迅先生丰富的精神世界,感受到他所具有的道德力量,相比之下,越发显出我自己的_______。填入画横线部分最恰
馆藏(collections)丰富的高校博物馆(universitymuseum)无疑是一座“宝藏”。但令人遗憾的是,这座宝藏一直很少受到关注。最近,北京的一些高校公开表示将向公众免费开放校内博物馆。这一举动为学术馆藏走近普通大众提供了一个良好的开端。但
最新回复
(
0
)