首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知β可用α1,α2,…,αs线性表示,但不可用α1,α2,…,αs-1线性表示.证明 (1)αs不可用α1,α2,…,αs-1线性表示; (2)αs可用α1,α2,…,αs-1,β线性表示.
已知β可用α1,α2,…,αs线性表示,但不可用α1,α2,…,αs-1线性表示.证明 (1)αs不可用α1,α2,…,αs-1线性表示; (2)αs可用α1,α2,…,αs-1,β线性表示.
admin
2017-10-21
31
问题
已知β可用α
1
,α
2
,…,α
s
线性表示,但不可用α
1
,α
2
,…,α
s-1
线性表示.证明
(1)α
s
不可用α
1
,α
2
,…,α
s-1
线性表示;
(2)α
s
可用α
1
,α
2
,…,α
s-1
,β线性表示.
选项
答案
用秩说明,条件说明, r(α
1
,α
2
,…,α
s
,β)=r(α
1
,α
2
,…,α
s
),r(α
1
,α
2
,…,α
s-1
,β)=r(α
1
,α
2
,…,α
s-1
)+1 于是有 r(α
1
,α
2
,…,α
s
),r(α
1
,α
2
,…,α
s
,β)≥r(α
1
,α
2
,…,α
s-1
,β) r(α
1
,α
2
,…,α
s-1
)+1≥r(α
1
,α
2
,…,α
s
)从而其中两个“≥”号都为等号.于是 r(α
1
,α
2
,…,α
s-1
)+1=r(α
1
,α
2
,…,α
s
) 因此,α
s
不可用α
1
,α
2
,…,α
s-1
线性表示. r(α
1
,α
2
,…,α
s
,β)=r(α
1
,α
2
,…,α
s-1
,β),因此,α
s
可用α
1
,α
2
,…,α
s-1
,β线性表示.
解析
转载请注明原文地址:https://kaotiyun.com/show/FOH4777K
0
考研数学三
相关试题推荐
设xy=xf(x)+yg(z),且xf’(z)+yg’(z)≠0,其中z=z(x,y)是z,y的函数.证明:
用配方法化下列二次型为标准形:f(x1,x2,x3)=x12+2x22—5x32+2x1x2—2x1x3+2x2x3.
设A是m×n矩阵,若ATA=0,证明:A=0.
设A,B为n阶矩阵,且A2=A,B2=B,(A+B)2=A+B.证明:AB=O,
设un>0(n=1,2,…),Sn=u1+u2+…+un.证明:收敛.
设向量组α1,α2,…,αs为齐次线性方程组AX=0的一个基础解系,AB≠0.证明:齐次线性方程组BY=0有零解,其中B=(β,β+α1,…,β+αs).
设(1)a,b为何值时,β不能表示为α1,α2,α3,α4的线性组合?(2)a,b为何值时,β可唯一表示为α1,α2,α3,α4的线性组合?
四元非齐次线性方程组AX=b有三个解向量α1,α2,α3且r(A)=3,设,求方程组AX=b的通解.
设函数f(x),g(x)在[a,+∞)上二阶可导,且满足条件f(a)=g(a),f’(a)=g’(a),f"(x)>g"(x)(x>a).证明:当x>a时,f(x)>g(x).
用概率论方法证明:
随机试题
AReferenceLetterSupposeyouareProfessorWang.Forthispart,youareallowed30minutestowriteAReferenceLetterfor
A、乳剂型注射剂B、油溶液型注射剂C、混悬型注射剂D、水溶液型注射剂E、注射用无菌粉末青霉素G钠盐注射液属于
患者女性,28岁,外阴瘙痒伴白带增多3天。妇科检查:大量白色豆渣样浓稠白带,子宫双附件未见异常。关于本病例以下说法哪项不恰当
一般临床上开始听到胎心的时间是()。
A.聚乙烯吡咯烷酮溶液B.L一羟丙基纤维素C.乳糖D.乙醇E.聚乙二醇6000片剂的黏合剂()。
下列不是影响股票投资价值内部因素的是()。
样本大小适当的关键是样本要有()。
Chinawill"declarewar"inthebattleagainstpollution,PremierLiKeqiangsaidattheclosingoftheNationalPeople’sCong
赵某与钱某原本是好友,赵某受钱某之托,为钱某保管一幅名画(价值800万元)达3年之久。某日,钱某来赵某家取画时,赵某要求钱某支付10万元保管费,钱某不同意。赵某突然起了杀意,为使名画不被钱某取回进而据为己有,用花瓶猛砸钱某的头部,钱某头部受重伤后昏倒,不省
Apparentlyfirstdescribedin1964,transientglobalamnesiaconsistsofa(n)abruptlossofmemorylastingfromafewsecondsto
最新回复
(
0
)