首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求微分方程2y"+y’一y=(4—6x)e-x。满足条件y(0)=0,y’(0)=0的特解y=y(x),并求y=y(x)的单调区间与极值.
求微分方程2y"+y’一y=(4—6x)e-x。满足条件y(0)=0,y’(0)=0的特解y=y(x),并求y=y(x)的单调区间与极值.
admin
2020-10-21
32
问题
求微分方程2y"+y’一y=(4—6x)e
-x
。满足条件y(0)=0,y’(0)=0的特解y=y(x),并求y=y(x)的单调区间与极值.
选项
答案
(1)求齐次线性微分方程2y"+y’一y=0的通解. 齐次微分方程2y"+y’一y=0的特征方程为2r
2
+r—1=0,特征根为r
1
=一1,r
2
=[*], 故齐次线性微分方程的通解为 [*] (2)求非齐次线性微分方程2y"+y’一y=(4—6x)e
-x
的一个特解. 由于λ=一1是特征单根,故设其特解为y
*
=x(Ax+B)e
-x
,则 (y
*
)’=(2Ax+B)e
-x
一(Ax
2
+Bx)e
-x
. (y
*
)"=2Ae
-x
一2(2Ax+B)e
-x
+(Ax
2
+Bx)e
-x
. 将它们代入方程2y"+y’一y=(4—6x)e
-x
,得 —6Ax+(4A一3B)=一6x+4, 比较等式两边x同次幂的系数,得 [*] 所以y
*
=x
2
e
-x
. (3)非齐次线性微分方程2y"+y’一y=(4—6x)e
-x
的通解为 [*] (4)求微分方程2y"+y’—y=(4—6x)e
-x
满足条件y(0)=0,y’(0)=0的特解. [*] 由y(0)=0,y’(0)=0,得 [*] 故yY=x
2
e
-x
. 求y=x
2
e
-x
的单调区间与极值. y’=x(2一x)e
-x
,令y’=0,得驻点x
1
=0,x
2
=2,列表如下: [*] 故y=x
2
e
-x
的单调增区间为[0,2],单调减区间为(一∞,0],[2,+∞),极小值为y(0)=0, 极大值为y(2)=4e
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/FU84777K
0
考研数学二
相关试题推荐
设区域D由χ=0,y=0,χ+y=,χ+y=1围成,若I1=[ln(χ+y)]3dχdy,I2=(χ+y)3dχdy,I3=sin3(χ+y)dχdy,则().
设f(x)二阶可导,y=f(lnx),则y〞=[].
A是m×n矩阵,B都n×m矩阵.AB可逆,则
设A,B为n阶可相似对角化矩阵,且有相同特征值,证明:A,B相似.
设f(x)在[0,2]上二阶可导,且f"(x)<0,f’(0)=1,f’(2)=-1,f(0)=f(2)=1.证明:
设f(x,y)为连续函数,改变为极坐标的累次积分为
设D为xoy平面上的有界封闭区域,z=f(x,y)在D上连续,在D内可偏导且满足,若f(x,y)在D内没有零点,则f(x,y)在D上().
(2000年)已知f(χ)是周期为5的连续函数.它在χ=0某个邻域内满足关系式f(1+sinχ)-3f(1-sinχ)=8χ+α(χ)其中α(χ)是当χ→0时比χ高阶的无穷小,且f(χ)在χ=1处可导,求曲线y=f(χ)在点(6,f(6
[2002年]设函数f(x)在x=0的某个邻域内具有二阶连续导数,且f(0)≠0,f'(0)≠0,f"(0)≠0.证明:存在唯一的一组实数λ1,λ2,λ3,使得当h→0时,λ1f(h)+λ2f(2h)+λ3f(3h)一f(0)是比h2高阶的无穷小.
[2007年]求微分方程y"(x+y′2)=y′满足初始条件y(1)=y′(1)=1的特解.
随机试题
北宋著名文学家欧阳修的号是()
违反《中华人民共和国动物防疫法》规定,未经检疫,向无规定动物疫病区输入动物、动物产品的,由动物卫生监督机构责令改正,处()以上()以下罚款;情节严重的,处1万元以上10万元以下罚款
根据《建设工程监理规范》(GB/T50319—2013),总监理工程师应及时签发工程暂停令的有()。
从第一期起,在一定时期内每期期初等额收付的系列款项是()。
受到前蜀王建礼敬,赐号“禅月大师”的著名僧人是()。
沙眼的主要传播途径是()
自然界已知的最硬物质,素有“硬度之王”之称的是()。
假设二维随机变量(X,Y)在矩形区域G={(x,y)|0≤x≤2,0≤y≤1}上服从均匀分布.记(Ⅰ)求U和V的联合分布;(Ⅱ求U和V的相关系数ρ.
Whatisthespeakermainlytalkingabout?
Thinkbeforeyoupost.Youmightnotbeawareofhowmuchinformationyou’re【C1】______.That’sthemessagefromthefounders
最新回复
(
0
)