首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求微分方程2y"+y’一y=(4—6x)e-x。满足条件y(0)=0,y’(0)=0的特解y=y(x),并求y=y(x)的单调区间与极值.
求微分方程2y"+y’一y=(4—6x)e-x。满足条件y(0)=0,y’(0)=0的特解y=y(x),并求y=y(x)的单调区间与极值.
admin
2020-10-21
54
问题
求微分方程2y"+y’一y=(4—6x)e
-x
。满足条件y(0)=0,y’(0)=0的特解y=y(x),并求y=y(x)的单调区间与极值.
选项
答案
(1)求齐次线性微分方程2y"+y’一y=0的通解. 齐次微分方程2y"+y’一y=0的特征方程为2r
2
+r—1=0,特征根为r
1
=一1,r
2
=[*], 故齐次线性微分方程的通解为 [*] (2)求非齐次线性微分方程2y"+y’一y=(4—6x)e
-x
的一个特解. 由于λ=一1是特征单根,故设其特解为y
*
=x(Ax+B)e
-x
,则 (y
*
)’=(2Ax+B)e
-x
一(Ax
2
+Bx)e
-x
. (y
*
)"=2Ae
-x
一2(2Ax+B)e
-x
+(Ax
2
+Bx)e
-x
. 将它们代入方程2y"+y’一y=(4—6x)e
-x
,得 —6Ax+(4A一3B)=一6x+4, 比较等式两边x同次幂的系数,得 [*] 所以y
*
=x
2
e
-x
. (3)非齐次线性微分方程2y"+y’一y=(4—6x)e
-x
的通解为 [*] (4)求微分方程2y"+y’—y=(4—6x)e
-x
满足条件y(0)=0,y’(0)=0的特解. [*] 由y(0)=0,y’(0)=0,得 [*] 故yY=x
2
e
-x
. 求y=x
2
e
-x
的单调区间与极值. y’=x(2一x)e
-x
,令y’=0,得驻点x
1
=0,x
2
=2,列表如下: [*] 故y=x
2
e
-x
的单调增区间为[0,2],单调减区间为(一∞,0],[2,+∞),极小值为y(0)=0, 极大值为y(2)=4e
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/FU84777K
0
考研数学二
相关试题推荐
若f(x)的一个原函数是arctanx,则xf(1一x1)dx=
设f(x)二阶可导,且f(0)=0,令g(x)=求g’(x)并讨论函数g’(x)的连续性。
设f(x)二阶可导,且f(0)=0,令g(x)=确定a的取值,使得g(x)为连续函数。
计算二重积分,其中区域D是由直线x=-2,y=0,y=2及曲线x=所围成的平面区域。
(1999年)设f(χ)是区间[0,+∞)上单调减少且非负的连续函数,a1=f(k)-∫1nf(χ)dχ(n=1,2,…),证明数列{an}的极限存在.
设A>0,D是由曲线段y=Asinx(0≤x≤π/2)及直线y=0,x=π/2所围成的平面区域,V1,V2分别表示D绕x轴与绕y轴旋转成旋转体的体积,若V1=V2,求A的值。
求极限:
设a1=1,当n≥1时,an+1=,证明:数列{an}收敛并求其极限.
设(Ⅰ)求f’(x);(Ⅱ)证明:x=0是f(x)的极大值点;(Ⅲ)令xn=,考察f’(xn)是正的还是负的,n为非零整数;(Ⅳ)证明:对,f(x)在(-δ,0]上不单调上升,在[0,δ]上不单调下降.
随机试题
急性腹痛考虑胰腺炎还需与下列哪些疾病相鉴别()
A.熏硫B.发汗C.切片D.蒸E.置沸水中略煮或蒸红参加工需()
中国陶器工艺的巅峰时期是()。
下列说法中正确的是()。
我国《失业保险条例》规定,失业保险待遇的领取根据职工本人失业前在企业连续工作时间确定。累计缴费满10年以上的,领取失业保险期限最长为()。
被称作“雨巷诗人”的现代派诗人是()。
按照我国《合同法》的规定,下面哪项可能是要约?()
一、注意事项1.本试卷由给定资料与作答要求两部分构成。2.第一题、第二题、第五题,所有考生都必须作答。第三题仅限行政执法类、市(地)以下综合管理类职位的考生作答。第四题仅限考省级(含副省级)以上综合管理类职位的考生作答
每一个真正有天赋的作家都至少要写出一本能够在商业上成功的小说。以下哪项是上述陈述的逻辑推论?
从2013年7月1日起,党的群众路线教育实践活动在全党展开。群众路线教育实践活动的总要求是“照镜子、正衣冠、洗洗澡、治治病”。洗洗澡主要是指
最新回复
(
0
)