首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知三元二次型f=xTAx的秩为2,且 求此二次型的表达式,并求正交变换x=Qy化二次型为标准形。
已知三元二次型f=xTAx的秩为2,且 求此二次型的表达式,并求正交变换x=Qy化二次型为标准形。
admin
2018-02-07
64
问题
已知三元二次型f=x
T
Ax的秩为2,且
求此二次型的表达式,并求正交变换x=Qy化二次型为标准形。
选项
答案
二次型x
T
Ax的秩为2,即r(A)=2,所以λ=0是A的特征值。 [*] 所以3是A的特征值,(1,2,1)
T
是与3对应的特征向量;一1也是A的特征值值,(1,一1,1)
T
是与一1对应的特征向量。 因为实对称矩阵不同特征值的特征向量相互正交,设λ=0的特征向量是(x
1
,x
2
,x
3
)
T
,则有 [*] 由方程组[*]解出λ=0的特征向量是(1,0,一1)
T
。 [*] 因此x
T
Ax=[*](x
1
2
+10x
2
2
+x
3
2
+16x
1
x
2
+2x
1
x
3
+16x
2
x
3
), 令Q=[*], 则经正交变换x=Qy,有x
T
Ax=y
T
[*]y=3y
1
2
一y
3
2
。
解析
转载请注明原文地址:https://kaotiyun.com/show/FXk4777K
0
考研数学二
相关试题推荐
设A,B为同阶可逆矩阵,则().
证明函数y=sinx-x单调减少.
设函数f(x)在(-∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2-4),若对任意的x都满足f(x)=kf(x+2),其中k为常数.写出f(x)在[-2,0)上的表达式;
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:当ξTξ=1时,A是不可逆矩阵.
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:A2=A的充要条件是ξTξ=1;
设A为n阶非零矩阵,E为n阶单位矩阵.若A3=0,则
设三阶实对称矩阵A的特征值是1,2,3;矩阵A的属于特征值1,2的特征向量分别是α1=(-1,-1,1)T,α2=(1,-2,-1)T.求矩阵A.
设二次型f(x1,x2,x3)=xTAX=ax12+2x22-2x32+2bx1x3(6>o),其中二次型的矩阵A的特征值之和为1,特征值之积为-12.利用正交变换将二次型,化为标准形,并写出所用的正交变换和对应的正交矩阵.
已知二次型f(x1,x2,x3)=(1-a)x22+(1-a)x22+2x32+2(1+a)x1x2的秩为2.求n的值;
已知实二次型f(x1,x2,x3)=a(x12,x22,x32)+4x1x2+4x1x3+4x2x3经正交变换x=Py可化成标准形f=6y12,则a=_______.
随机试题
《饮酒》(其五)中,表现了“无我之境”的诗句是()
A.神经调节B.负反馈调节C.自身调节D.体液调节血压在一定范围内波动时,脑血管口径产生适应性改变以保持脑血流量相对恒定
控制小儿风湿热复发首选的药物是
可摘局部义齿上不起稳定作用的部分是
矽肺的病变特点是
运动负荷量度是________对机体刺激程度的反映。
在区间[一1,1]上随机取一个数k,使直线y=k(x+2)与圆x2+y2=1相交的概率为()
什么是战略联盟?其具有什么优缺点?
阅读下面的程序:#includevoidmain(){intx;cin>>x;if(x++>5)cout
SaveEnergyatHomeOntheaverage,Americanswasteasmuchenergyastwo-thirdsoftheworld’spopulationconsumes.That’s
最新回复
(
0
)