首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(一∞,+∞)连续,以T为周期,令F(x)=∫0xf(t)dt,求证: (I)F(x)一定能表成:F(x)=kx+φ(x),其中k为某常数,φ(x)是以T为周期的周期函数; (Ⅱ) (Ⅲ)若又有f(x)≥0(x∈(一∞,+∞)),n为自然数,则
设f(x)在(一∞,+∞)连续,以T为周期,令F(x)=∫0xf(t)dt,求证: (I)F(x)一定能表成:F(x)=kx+φ(x),其中k为某常数,φ(x)是以T为周期的周期函数; (Ⅱ) (Ⅲ)若又有f(x)≥0(x∈(一∞,+∞)),n为自然数,则
admin
2021-11-15
54
问题
设f(x)在(一∞,+∞)连续,以T为周期,令F(x)=∫
0
x
f(t)dt,求证:
(I)F(x)一定能表成:F(x)=kx+φ(x),其中k为某常数,φ(x)是以T为周期的周期函数;
(Ⅱ)
(Ⅲ)若又有f(x)≥0(x∈(一∞,+∞)),n为自然数,则当nT≤x<(n+1)T时,有
n∫
0
T
f(x)dx≤∫
0
x
f(t)dt<(n+1)∫
0
T
f(x)dx.
选项
答案
(I)即确定常数k,使得φ(x)=F(x)一kx以T为周期.由于 φ(x+T)=F(x+T)一k(x+T)=∫
0
x
f(t)dt-kx+∫
x
x+T
f(t)dt一kT =φ(x)+∫
0
T
f(t)dt一kT, 因此,取[*],φ(x)=F(x)一kx,则φ(x)是以T为周期的周期函数.此时 [*] (Ⅱ)不能用洛必达法则.因为[*]不存在,也不为∞.但∫
0
x
f(t)dt可表示成 [*] φ(x)在(一∞,+∞)连续且以T为周期,于是,φ(x)在[0,T]有界,在(一∞,+∞)也有界.因此 [*] (Ⅲ)因f(x)≥0,所以当nT≤x<(n+1)T时, n∫
0
T
f(t)dt=∫
0
nT
f(t)dt≤∫
0
x
f(t)dt<∫
0
(n+1)T
f(t)dt=(n+1)∫
0
T
f(t)dt
解析
转载请注明原文地址:https://kaotiyun.com/show/FXl4777K
0
考研数学一
相关试题推荐
已知,求X.
设y=y(x)是由exy—x+y一2=0确定的隐函数,求y’’(0).
A是2阶矩阵,2维列向量α1,α2线性无关,Aα1=α1+α2,Aα2=4α1+α2.求A的特征值和|A|.
把二重积分f(x,y)dxdy写成极坐标下的累次积分的形式(先r后θ),其中D由直线x+y=1,z=1,y=1围成.
设X1,X2,…,X16为正态总体X~N(μ,4)的简单随机样本,设H0:μ=0,H1:μ≠0的拒绝域为,则犯第一类错误的概率为()
设常数a>0,积分讨论I1与I2的大小,并给出推导过程.
设两曲线y=x2+ax+b与一2y=一1+xy3在点(一1,1)处相切,则a=___________,b=___________。
微分方程y"+6y’+9y=0的通解y=_______.
设总体X的数学期望和方差都存在,X1,X2,…,Xn是来自总体X的简单随机样本,X是样本均值,则对于任意i,j(i≠j),的相关系数ρij=________.
求极限
随机试题
Iftheonlineserviceisfreethenyouaretheproduct,technicianssay.GoogleandFacebookmakea【C1】________collectingperson
脂肪是人体能量最重要的来源。()
简述领导者个体绩效考评的主要内容。
设f(x)是连续的奇函数,且∫01f(x)dx=1,则∫-10f(x)dx=_________.
呕血还是便血取决于出血部位的高低,出血的速度和出血量是次要的。
女性患者,甲状腺肿大伴多汗、多食、消瘦、心悸、烦躁,根据同位素扫描及血T3、T4检查,诊断为甲亢。治疗期间应定期复查()
孔子的仁爱核心是“恕”,“恕”的正确表达是()。
完成全面建设小康社会和实现现代化的历史性任务,重点和难点都在()。
Weoftentendtoassociatesmilingastheresultofapositiveeventormood.Butresearchdemonstratesthattheactofsmiling,
A、Space.B、Tranquility.C、Appliances.D、Location.B对话中甲,男士问道:“现在,最大的问题是:有噪音吗?邻居怎么样?”女士回答房子所在的地方很宁静,故B项“宁静”是男士主要考虑的问题。其他三项都不是男士主要
最新回复
(
0
)