设f(x)在(a,b)二阶可导,x1,x2∈(a,b),x1≠x2,t∈(0,1),则 (Ⅰ)若f"(x)>0(∈(a,b)),有 f[tx1+(1一t)x2]<t f(x1)+(1一t)f(x2), (4.6) 特别有[f(x1)+f(x2

admin2020-03-05  11

问题 设f(x)在(a,b)二阶可导,x1,x2∈(a,b),x1≠x2t∈(0,1),则
(Ⅰ)若f"(x)>0(∈(a,b)),有
    f[tx1+(1一t)x2]<t f(x1)+(1一t)f(x2),    (4.6)
特别有[f(x1)+f(x2)];
(Ⅱ)若f"(x)<0(x∈(a,b)),有
    f[tx1+(1一t)x2]>tf(x1)+(1一t)f(x2),    (4.7)
特别有[f(x1)+f(x2)].

选项

答案(Ⅰ)与(Ⅱ)的证法类似,下面只证(Ⅰ).因f"(x)>0(x∈(a,b)) → f(x)在(a,b)为凹的 → (4.5)相应的式子成立.注意tx1+(1一t)x2∈(a,b) → f(x1)>[tx1+(1一t)x2]+f’[tx1+(1一t)x2][x1一(tx1+(1一t)x2)] =f[tx1+(1一t)x2]+f’[tx1+(1一t)x2](1一t)(x1一x2), f(x2)>f[tx1+(1一t)x2]+f’[tx1+(1一t)x2][x2一(tx1+(1一t)x2)] =f[tx1+(1一t)x2]一f’[tx1+(1一t)x2]t(x1一x2), 两式分别乘t与(1一t)后相加得 tf(x1)+(1一t)f(x2)>f[tx1+(1一t)x2].

解析
转载请注明原文地址:https://kaotiyun.com/show/6cS4777K
0

随机试题
最新回复(0)