首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1)设y=y(x)由方程ey+6xy+x2-1=0确定,求y’’(0). (2)设y=y(x)是由exy-x+y-2=0确定的隐函数,求y’’(0).
(1)设y=y(x)由方程ey+6xy+x2-1=0确定,求y’’(0). (2)设y=y(x)是由exy-x+y-2=0确定的隐函数,求y’’(0).
admin
2019-09-04
47
问题
(1)设y=y(x)由方程e
y
+6xy+x
2
-1=0确定,求y’’(0).
(2)设y=y(x)是由e
xy
-x+y-2=0确定的隐函数,求y’’(0).
选项
答案
(1)将x=0代入已知方程得y=0, e
y
+6xy+x
2
-1=0两边对x求导得 [*] 将x=0,y=0代入上式得y’(0)=0. [*] 两边再对x求导得 [*] 将x=0,y=0,y’(0)=0代入上式得y’’(0)=-2. (2)当x=0时,y=1, e
xy
-x+y-2=0两边对x求导得 e
xy
(y+xy’)-1+y’=0,解得y’(0)=0; e
xy
(y+xy’)-1+y’=0两边对x求导得 e
xy
(y+xy’)
2
+e
xy
(2y’+xy’’)+y’’=0,解得y’’(0)=-1.
解析
转载请注明原文地址:https://kaotiyun.com/show/FoD4777K
0
考研数学三
相关试题推荐
设n≥2为正整数,则An一2An-1=_______.
已知A,B均是3阶矩阵,将A中第3行的一2倍加到第2行得矩阵A1,将B中第1列和第2列对换得到B1,又A1B1=,则AB=________.
要使都是线性方程组AX=0的解,则下列矩阵可能为A的是()
设二维随机变量(X,Y)的概率密度为则随机变量U=X+2Y,V=一X的协方差Cov(U,V)=______.
一商家销售某种商品的价格满足关系p=7—0.2x(万元/单位),x为销售量,成本函数为C=3x+1(万元),其中x服从正态分布N(5p,1),每销售一单位商品,政府要征税t万元,求该商家获得最大期望利润时的销售量.
设A是n阶实矩阵,有Aξ=λξ,ATη=μη,其中λ,μ是实数,且λ≠μ,ξ,η是n维非零向量.证明:ξ,η正交.
设f(x)在[a,b]上二阶可导,且f’(a)=f’(b)=0.证明:存在ξ∈(a,b),使
求下列函数关于x的导数:(1)(2)y=ef(x).f(ex),其中f(x)具有一阶导数;(3)y=.其中f’(x)=arctanx2,并求(4)设f(t)具有二阶导数,,求f[f’(x)],{f[f(x)])’.
设函数,其中n=1,2,3,…为任意自然数,f(x)为[0,+∞)上正值连续函数,求证:(Ⅰ)Fn(x)在(0,+∞)存在唯一零点xn;(Ⅱ)(1+xn)收敛;(Ⅲ)Fn(x)=+∞。
求下列复合函数的偏导数:设且f,φ具有二阶连续偏导数,求
随机试题
CT扫描发现左心后区类圆形“肿块”影,内含少量气体,与横膈关系密切。下述疾病中可能性最大的是
A.酸败B.破裂C.分层D.转相E.絮凝乳滴聚集成团但保持乳滴的完整分散体而不呈现合并现象
某投保人缴净保费P=1800元,附加费比例k=10%,则该投保人缴纳的营业保费为( )元。
某企业取得3年期银行存款1000万元,年利率8%,半年付息一次,到期一次还本,筹资费用率为l%,企业所得税率为25%。该企业的银行借款资本成本为()。
德国古典哲学是马克思主义哲学的直接理论来源。()
阅读《一个小官吏之死》这篇小说的片断,完成下列题。一个极好的傍晚,一个同样极好的名叫伊万.德米特里奇.切尔维亚科夫的庶务官坐在剧院大厅第二排的围椅上,架上望远镜观看《哥纳维勒的钟》。他凝神注目,飘然欲仙。突然……在小说里经常遇到“突然”这两个字。
王珏、柳枚、江倩三人分别是三个孩子的母亲,她们带着自己的孩子一同去郊游。王珏对自己的孩子说:“真有趣,你们这三个孩子,也是一个姓王,一个姓柳,一个姓江,但是你们都不和自己的母亲同姓。”另一个姓江的孩子说:“一点都没错。”根据上述条件,请判断以下哪项为真?
在美化演示文稿版面时,下列叙述不正确的是______。
在窗体上画一个名称为Command1的命令按钮和一个名称为Text1的文本框,并编写如下事件过程:PrivateSubCommand1_Click()DimiAsInteger,aAsInteger,jAsInteger
Forthispart,youareallowed30minutestowriteashortessayonthetopicBroadenOurKnowledge.Youshouldwriteatleast1
最新回复
(
0
)