首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(t)在[0,π]上连续,在(0,π)内可导,且∫0πf(χ)cosχdχ=∫0πf(χ)sinχdχ=0.证明:存在ξ∈(0,π),使得f′(ξ)=0.
设f(t)在[0,π]上连续,在(0,π)内可导,且∫0πf(χ)cosχdχ=∫0πf(χ)sinχdχ=0.证明:存在ξ∈(0,π),使得f′(ξ)=0.
admin
2017-09-15
47
问题
设f(t)在[0,π]上连续,在(0,π)内可导,且∫
0
π
f(χ)cosχdχ=∫
0
π
f(χ)sinχdχ=0.证明:存在ξ∈(0,π),使得f′(ξ)=0.
选项
答案
令F(χ)=∫
0
χ
f(t)sintdt,因为F(0)=F(π)=0,所以存在χ
1
∈(0,π),使得 F′(χ
1
)=0,即f(χ
1
)sinχ
1
=0,又因为sinχ
1
≠0,所以f(χ
1
)=0. 设χ
1
是f(χ)在(0,π)内唯一的零点,则当χ∈(0,π)且χ≠χ
1
时,有sin(χ-χ
1
)f(χ) 恒正或恒负,于是∫
0
π
sin(χ-χ
1
)f(χ)dχ≠0. 而∫
0
π
sin(χ-χ
1
)f(χ)dχ=cosχ
1
∫
0
π
f(χ)sinχdχ-sinχ
1
∫
0
π
f(χ)cosχdχ=0,矛盾,所以f(χ)在(0,π)内至少有两个零点.不妨设f(χ
1
)=f(χ
2
)=0,χ
1
,χ
2
∈(0,π)且χ
1
<χ
2
,由罗尔中值定理,存在ξ∈(χ
1
,χ
2
)[*](0,π),使得f′(ξ)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/Fok4777K
0
考研数学二
相关试题推荐
[*]
A、 B、 C、 D、 C
某厂家生产的一种产品同时在两个市场销售,售价分别为P1和P2;销售量分别为Q1和Q2;需求函数分别为Q1=24-0.2P1,Q2=10-0.05P2总成本函数为C=35+40(Q1+Q2)试问:厂家如何确定两个市场的产品售价,使其获得的总利润最
证明函数y=sinx-x单调减少.
设问当k为何值时,函数f(x)在其定义域内连续?为什么?
设A为n阶可逆矩阵,则下列结论正确的是().
求微分方程y’=y(1-x)/x的通解。
已知f(x)是微分方程xf’(x)-f(x)=满足f(1)=0的特解,则
微分方程y’’-y=ex+1的一个特解应具有形式(式中a、b为常数)为().
设f(u,v)具有连续偏导数,且满足f’u(u,v)+f’v(u,v)=uv求y(x)=e2x(x,x)所满足的一阶微分方程,并求其通解.
随机试题
下列属于主物和从物关系的是()
患者,女,45岁,近2年来反复出现多发口腔溃疡,两个月前劳累后出现左膝关节肿痛,双下肢皮肤结节红斑伴疼痛,一周前突发右眼视物不清,化验ESR增快,ANA阴性,最可能的诊断是
应用最多的立柱式X线管支架是
深立井井筒施工时,为了增大通风系统的风压,提高通风效果,合理的通风方式是()。
下列不属于企业投资性房地产的是()。
具有发行的银行、政府的银行、银行的银行三大职能的银行是()。
设A.B是n阶矩阵,E—AB可逆,证明E—BA可逆.
不同AS之间使用的路由协议是()。
SaveEnergyatHomeOntheaverage,Americanswasteasmuchenergyastwo-thirdsoftheworld’spopulationconsumes.That’s(1)
Whatwillthemanmostprobablydo?
最新回复
(
0
)