首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(t)在[0,π]上连续,在(0,π)内可导,且∫0πf(χ)cosχdχ=∫0πf(χ)sinχdχ=0.证明:存在ξ∈(0,π),使得f′(ξ)=0.
设f(t)在[0,π]上连续,在(0,π)内可导,且∫0πf(χ)cosχdχ=∫0πf(χ)sinχdχ=0.证明:存在ξ∈(0,π),使得f′(ξ)=0.
admin
2017-09-15
32
问题
设f(t)在[0,π]上连续,在(0,π)内可导,且∫
0
π
f(χ)cosχdχ=∫
0
π
f(χ)sinχdχ=0.证明:存在ξ∈(0,π),使得f′(ξ)=0.
选项
答案
令F(χ)=∫
0
χ
f(t)sintdt,因为F(0)=F(π)=0,所以存在χ
1
∈(0,π),使得 F′(χ
1
)=0,即f(χ
1
)sinχ
1
=0,又因为sinχ
1
≠0,所以f(χ
1
)=0. 设χ
1
是f(χ)在(0,π)内唯一的零点,则当χ∈(0,π)且χ≠χ
1
时,有sin(χ-χ
1
)f(χ) 恒正或恒负,于是∫
0
π
sin(χ-χ
1
)f(χ)dχ≠0. 而∫
0
π
sin(χ-χ
1
)f(χ)dχ=cosχ
1
∫
0
π
f(χ)sinχdχ-sinχ
1
∫
0
π
f(χ)cosχdχ=0,矛盾,所以f(χ)在(0,π)内至少有两个零点.不妨设f(χ
1
)=f(χ
2
)=0,χ
1
,χ
2
∈(0,π)且χ
1
<χ
2
,由罗尔中值定理,存在ξ∈(χ
1
,χ
2
)[*](0,π),使得f′(ξ)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/Fok4777K
0
考研数学二
相关试题推荐
[*]
[*]
[*]
在一条公路的一侧有某单位的A、B两个加工点,A到公路的距离.AC为1km,B到公路的距离BD为1.5km,CD长为3km(如图4—2).该单位欲在公路旁边修建一个堆货场M,并从A、B两个大队各修一条直线道路通往堆货场M,欲使A和B到M的道路总长最短,堆货场
证明下列函数在(-∞,+∞)内是连续函数:(1)y=3x2+1(2)y=cosx
若f(x)不变号,且曲线y=f(x)在点(1,1)处的曲率圆为x2+y2=2,则函数f(x)在区间(1,2)内
设L是一条平面曲线,其上任意一点P(x,y)(x>0)到坐标原点的距离,恒等于该点处的切线在y轴上的截距,且L经过点(1/2,0).求L位于第一象限部分的一条切线,使该切线与L以及两坐标轴所围图形的面积最小.
设A为3阶实对称矩阵,A的秩为2,且求矩阵A.
当实数a为何值时,方程组Ax=β有无穷多解,并求其通解.
设,其中f(s,t)二阶连续可偏导,求du及
随机试题
收入差距现象是一把双刃剑,对社会经济发展的作用具有[a]二重性,即合理、合法且适度的收入差距具有积极意义,而不合理不合法且过大的收入差距会带来消极影响。现在,有人对收入差距问题产生了一些思想困惑,有的甚至提出了收入差距的产生和扩大是[b]了积极性,还是[c
患者,男,35岁。反复发热、咳嗽2个月余,口服多种抗菌药均无效,现出现胸闷、气促,就诊时胸部CT示间质性肺炎;外周血白细胞计数下降,T淋巴细胞下降,CD4+T淋巴细胞450/μl,否认冶游史。该病的治疗方法不包括
调整工程网络计划时,调整内容一般包括()。
产生个人征信异议的原因不包括()。
中国公民张先生是某民营非上市公司的个人大股东,同时也是一位作家。2011年5月取得的部分实物或现金收入如下:(1)公司为其购买了一辆轿车并将车辆所有权办到其名下,该车购买价为35万元。经当地主管税务机关核定,公司在代扣个人所得税税款时允许税前减除的数额为
()
食物链一词是英国动物学家埃尔顿于1927年首次提出的。如果一种有毒物质被食物链的低级部分吸收,如被草吸收,虽然浓度很低,不影响草的生长,但兔子吃草后有毒物质很难排泄,会在它体内积累;鹰吃大量的兔子,有毒物质会在鹰体内进一步积累。美国国鸟白头鹰之所以面临灭绝
慢性病防控的实质是医学问题,也就是说如果医学不能从理论创新上提出慢性病防控的战略措施,其他手段可能都是____________________,而只有医学理论创新才是____________________的核心。填入画横线部分最恰当的一项是:
Allpeoplehavesomeabilitytomanagetheirhealthandthehealthofthosetheycarefor.Meanwhile,withtheincreasing【S1】___
HowHealthyAreYou?Goodhealthisnotsomethingyouareabletobuyatthedrugstore,andyoucan’tdependongettingitb
最新回复
(
0
)