首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上可导,f’(a)f’(b)<0,则至少存在一点x0∈(a,b)使( )
设f(x)在[a,b]上可导,f’(a)f’(b)<0,则至少存在一点x0∈(a,b)使( )
admin
2019-08-12
23
问题
设f(x)在[a,b]上可导,f
’
(a)f
’
(b)<0,则至少存在一点x
0
∈(a,b)使( )
选项
A、f(x
0
)>f(a)。
B、f(x
0
)>f(b)。
C、f
’
(x
0
)=0。
D、f(x
0
)=
[f(a)+f(b)]。
答案
C
解析
根据题意,不妨设f
’
(a)<0,f
’
(b)>0。
由f
’
(a)=
<0可知,存在x=a的右邻域x
1
∈
(a)时,f(x
1
)<f(a)
f(a)不是f(x)在[a,b]上最小值。同理可证f(b)也不是f(x)在[a,b]上最小值。所以f(x)在[a,b]上的最小值点x=x
0
∈(a,b),由极值的必要条件知f
’
(x
0
)=0。
转载请注明原文地址:https://kaotiyun.com/show/FqN4777K
0
考研数学二
相关试题推荐
设a1,a2,…,an是一组n维向量,已知n维单位坐标向量e1,e2,…,en能由它们线性表示,证明α1,α2……αn线性无关.
在过点O(0,0)和A(π,0)的曲线族y=asinx(a>0)中,求一条曲线L,使沿该曲线从O到A的曲线积分∫L(1+y3)dx+(2x+y)dy的值最小.
设f(x)在x>0上有定义,且对任意正实数x,yf(xy)=xf(y)+yf(x),f’(1)=2,试求f(x).
设f(x)在[a,b]上二阶可导,且f’(a)=f’(b)=0,证明:ξ∈(a,b),使|f"(ξ)|≥|f(b)一f(a)|。
求下列隐函数的微分或导数:(Ⅰ)设ysinx-cos(x-y)=0,求dy;(Ⅱ)设方程确定y=y(x),求y’与y".
已知f(x)的一个原函数为cosx,g(x)的一个原函数为x2,下列函数哪些是复合函数f[g(x)]的原函数?(1)x1(2)cos2x(3)cos(x2)(4)cosx
已知问λ取何值时,(1)β可由α1,α2,α3线性表出,且表达式唯一;(2)β可由α1,α2,α3线性表出,但表达式不唯一;(3)β不能由α1,α2,α3线性表出.
设函数y(x)(x≥0)二阶可导且y’(x)>0,y(0)=1.过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1一S2恒
设f(x)的二阶导数在x=0处连续,且试求f(0),f’(0),f"(0)以及极限
∫2xlnxln(1+x)dt=()
随机试题
与角膜营养有关的有()
当场地内有地下水时,应根据场地及周边区域的工程地质条件、水文地质条件、周边环境情况和支护结构与基础形式等因素,确定地下水控制方法。地下水的控制方法主要有()。
企业获得的捐赠利得应该记入营业外收入中,影响利润总额。()
()是股票发行人就其发行的股票的承销事宜与股票承销商签订的具有法律效率的文件。
没有查出病就是健康,实质是忽视了人的()
所谓()是指行政主体为实现行政职能而在行政管理活动中采取强力方式的行政行为。
小麦:麦穗:麦粒
媒介素养(中国人民大学,2008年;中国传媒大学,2011年MJC真题)
NationalAviationandSpaceAdministration(NASA)anditspartnersintheInternationalSpaceStationhaveagreedinprincipleto
HowmanykindsofdoctorsarethereintheUS?______.
最新回复
(
0
)