首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α1,α2,α3,α4是3维非零向量,则下列命题中错误的是
已知α1,α2,α3,α4是3维非零向量,则下列命题中错误的是
admin
2014-02-06
56
问题
已知α
1
,α
2
,α
3
,α
4
是3维非零向量,则下列命题中错误的是
选项
A、如果α
4
不能由α
1
,α
2
,α
3
线性表出,则α
1
,α
2
,α
3
线性相关.
B、如果α
1
,α
2
,α
3
线性相关α
1
,α
2
,α
3
,α
4
线性相关,那么α
1
,α
2
,α
3
,α
4
也线性相关.
C、如果α
3
不能由α
1
,α
2
线性表出,α
4
不能由α
2
,α
3
线性表出,则α
1
可以由α
1
,α
2
,α
3
,α
4
线性表出.
D、如果秩r(α
1
,α
1
+α
2
,α
2
+α
3
)=r(α
4
,,α
1
+α
4
,α
2
+α
4
,α
3
+α
4
,),则α
4
可以由α
1
,α
2
,α
3
线性表出.
答案
B
解析
例如α
1
=(1,0,0)
T
,α
2
=(0,1,0)
T
,α
3
=(0,2,0)
T
,α
4
=(0,0,1)
T
,可知B不正确,应选B.关于A:如果α
1
,α
2
,α
3
线性无关,义因α
1
,α
2
,α
3
,α
4
是4个3维向量,它们必线性相关,而知α
4
必可由α
1
,α
2
,α
3
线性表出天于C:由已知条件,有(I)r(α
1
,α
2
)≠r(α
1
,α
2
,α
3
),(Ⅱ)r(α
2
,α
3
)≠r(α
2
,α
3
,α
4
).持r(α
2
,α
3
)=1,则必有r(α
1
,α
2
)=r(α
1
,α
2
,α
3
),与条件(I)矛盾.故必有r(α
2
,α
3
)=2.那么由(Ⅱ)知r(α
2
,α
3
,α
4
)=3,从而r(α
1
,α
2
,α
3
,α
4
)=3.因此α
1
可以由α
2
,α
3
,α
4
线性表出.关于D:经初等变换有(α
1
,α
1
,α
2
,α
2
+α
3
)→(α
1
,α
2
,α
2
+α
3
)→(α
1
,α
2
,α
3
),(α
4
,α
1
+α
4
,α
2
+α
4
,α
3
+α
4
)→(α
4
,α
1
,α
2
,α
3
)→(α
1
,α
2
,α
3
,α
4
),从而r(α
1
,α
2
,α
3
)=r(α
1
,α
2
,α
3
,α
4
).因而α
4
可以由α
1
,α
2
,α
3
线性表出.
转载请注明原文地址:https://kaotiyun.com/show/Ft54777K
0
考研数学一
相关试题推荐
设A=,求X使XA=B.
求解下列非齐次线性方程组:
求解下列齐次线性方程组:
设A,B都是m×n矩阵,证明A~B的充分必要条件是R(A)=R(B).
求作一个秩是4的方阵,它的两个行向量是(1,0,1,0,0),(1,一1,0,0,0).
从矩阵A中划去一行得到矩阵B,问A,B的秩的关系怎样?
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解.求A及,其中E为3阶单位矩阵.
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解.求正交矩阵Q和对角矩阵A,使得QTAQ=Λ;
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解.求A的特征值与特征向量;
随机试题
2003年某省政府为实施省人大的地方性规定出台一部规章,2006年省人大对该地方性法规进行修订,但未对该规章废止与否作出规定。2008年某省行政机关依据该规章对甲作出处罚。甲不服处罚提起行政诉讼,提出不应适用该规章。关于法院是否应适用该规章,下列哪些说法是
世界银行贷款项目采购工程和货物的资格预审方法是通过或不通过的合格制,评标方法是实质上的响应招标文件的有资格和能力的()中标。
下列现浇钢筋混凝土板底乳胶漆顶棚的工程做法,从外向里依次表述,其中哪条做法是错误的?[2003-096]
以下属于资产负债表非流动负债的是()。
简述教育与生产力的关系。
3~6岁儿童使用的主要句型是()
行政监督中的社会监督包括()。
下列职位中,我国《宪法》没有规定连任不得超过两届的是()。
某大会主席宣布:“此方案没有异议,大家都赞同,通过。”如果以上不是事实,下面哪项必为事实?
M:That’sabeautifuldressyouhaveon!W:______
最新回复
(
0
)