首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α1,α2,α3,α4是3维非零向量,则下列命题中错误的是
已知α1,α2,α3,α4是3维非零向量,则下列命题中错误的是
admin
2014-02-06
35
问题
已知α
1
,α
2
,α
3
,α
4
是3维非零向量,则下列命题中错误的是
选项
A、如果α
4
不能由α
1
,α
2
,α
3
线性表出,则α
1
,α
2
,α
3
线性相关.
B、如果α
1
,α
2
,α
3
线性相关α
1
,α
2
,α
3
,α
4
线性相关,那么α
1
,α
2
,α
3
,α
4
也线性相关.
C、如果α
3
不能由α
1
,α
2
线性表出,α
4
不能由α
2
,α
3
线性表出,则α
1
可以由α
1
,α
2
,α
3
,α
4
线性表出.
D、如果秩r(α
1
,α
1
+α
2
,α
2
+α
3
)=r(α
4
,,α
1
+α
4
,α
2
+α
4
,α
3
+α
4
,),则α
4
可以由α
1
,α
2
,α
3
线性表出.
答案
B
解析
例如α
1
=(1,0,0)
T
,α
2
=(0,1,0)
T
,α
3
=(0,2,0)
T
,α
4
=(0,0,1)
T
,可知B不正确,应选B.关于A:如果α
1
,α
2
,α
3
线性无关,义因α
1
,α
2
,α
3
,α
4
是4个3维向量,它们必线性相关,而知α
4
必可由α
1
,α
2
,α
3
线性表出天于C:由已知条件,有(I)r(α
1
,α
2
)≠r(α
1
,α
2
,α
3
),(Ⅱ)r(α
2
,α
3
)≠r(α
2
,α
3
,α
4
).持r(α
2
,α
3
)=1,则必有r(α
1
,α
2
)=r(α
1
,α
2
,α
3
),与条件(I)矛盾.故必有r(α
2
,α
3
)=2.那么由(Ⅱ)知r(α
2
,α
3
,α
4
)=3,从而r(α
1
,α
2
,α
3
,α
4
)=3.因此α
1
可以由α
2
,α
3
,α
4
线性表出.关于D:经初等变换有(α
1
,α
1
,α
2
,α
2
+α
3
)→(α
1
,α
2
,α
2
+α
3
)→(α
1
,α
2
,α
3
),(α
4
,α
1
+α
4
,α
2
+α
4
,α
3
+α
4
)→(α
4
,α
1
,α
2
,α
3
)→(α
1
,α
2
,α
3
,α
4
),从而r(α
1
,α
2
,α
3
)=r(α
1
,α
2
,α
3
,α
4
).因而α
4
可以由α
1
,α
2
,α
3
线性表出.
转载请注明原文地址:https://kaotiyun.com/show/Ft54777K
0
考研数学一
相关试题推荐
在秩是r的矩阵中,有没有等于0的r—l阶子式?有没有等于0的r阶子式?
求解下列非齐次线性方程组:
求解下列齐次线性方程组:
求解下列齐次线性方程组:
试利用矩阵的初等变换,求下列方阵的逆矩阵:
已知R3的两个基为设向量x在前一基中的坐标为(1,1,3)T,求它在后一基中的坐标.
设四元非齐次线性方程组的系数矩阵的秩为3,已知η1,η2,η3是它的三个解向量,且η1=,η1+η1=,求该方程组的通解.
设向量组的秩为2,求a,b.
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解.求A及,其中E为3阶单位矩阵.
随机试题
A、B两公司通过银行完成了一笔货币互换,银行从中收取一定利差,市场提供给A、B两公司的借款利率如下表所示:Ⅰ.A公司在欧元固定利率市场上以5.3%的利率融资Ⅱ.A公司在美元浮动利率市场上以LIBOR+0.3%的利率融资Ⅲ.B
仓库内应划分的区域包括()。
学校体育的根本任务是()
舌前2/3一般感觉与味觉的支配神经是
发生灾情、疫情时,经有关部门批准,医疗机构配制的制剂可以
创造有利成交条件,为业主卖个好价钱的具体做法有()。
“信息存储数字化和存储相对集中"有利于()。
借款合同中,借款人应当按照约定的借款用途使用借款,借款人未按照约定的借款用途使用借款的,贷款人可以采取的措施有()。
某计算机采用二级页表的分页存储管理方式,按字节编址,页大小为2toB,页表项大小为2B,逻辑地址结构为:逻辑地址空间大小为216页,则表示整个逻辑地址空间的页目录表中包含表项的个数至少是____。
Nocompanylikestobetolditiscontributingtothemoraldeclineofanation.Isthiswhatyouintendedtoaccomplishwithyo
最新回复
(
0
)