首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1=[a11,a21,an1]T,α2=[a12,a22,…,an2]T,…,αs=[a1s,a2s,ans]T.证明:向量组α1,α2,…,αs线性相关(线性无关)的充要条件是齐次线性方程组 有非零解(有唯一零解).
设向量组α1=[a11,a21,an1]T,α2=[a12,a22,…,an2]T,…,αs=[a1s,a2s,ans]T.证明:向量组α1,α2,…,αs线性相关(线性无关)的充要条件是齐次线性方程组 有非零解(有唯一零解).
admin
2016-09-19
134
问题
设向量组α
1
=[a
11
,a
21
,a
n1
]
T
,α
2
=[a
12
,a
22
,…,a
n2
]
T
,…,α
s
=[a
1s
,a
2s
,a
ns
]
T
.证明:向量组α
1
,α
2
,…,α
s
线性相关(线性无关)的充要条件是齐次线性方程组
有非零解(有唯一零解).
选项
答案
α
1
,α
2
,…,α
s
(线性无关)线性相关<=>(不)存在不全为0的x
1
,x
2
,…,x
s
,使得 x
1
α
1
+x
2
α
2
+…+x
s
α
s
=0成立 <=>(没)有不全为0的x
1
,x
2
,…,x
s
,使得[*] =0成立 <=>齐次线性方程组 [*] 有非零解(唯一零解).
解析
转载请注明原文地址:https://kaotiyun.com/show/FtT4777K
0
考研数学三
相关试题推荐
[*]
[*]
已知向量组α1=(t,2,1),α2=(2,t,0),α3=(1,-1,1),试讨论:(1)t为何值时,向量组α1,α2,α3线性相关?(2)t为何值时,向量组α1,α2,α3线性无关?
一批产品共有a十b个,其中a个正品,b个次品.今采用不放回抽样n次,问抽到的n个产品里恰有k个是正品的概率是多少?
设α1,α2,…,αm-1(m≥3)线性相关,向量组α2,…,αm线性无关,试讨论αm能否由α1,α2,…,αm-1线性表示?
利用概率测度的性质证明:在投掷两枚硬币的试验中,第一枚是均匀的当且仅当P({(H,H),(H,T)})=1/2;第二枚硬币是均匀的当且仅当P({(H,H),(T,H)})=1/2,其中H表示硬币出现的是正面,T表示硬币出现的是反面.
设向量组B:β1,β2,…,βr能由向量组A:α1,α2,…,αs线性表示为:其中,K为r×s矩阵,且向量组A线性无关,证明:向量组B线性无关的充要条件是矩阵K的秩r(K)=r.
设证明:f(x,y)在点(0,0)处连续且可偏导,并求出fx(0,0)和fy(00)的值.
设A与B均为n,阶矩阵,且A与B合同,则().
设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α1,A(α1+α2)线性无关的充分必要条件是
随机试题
库存费用基本上可以分为_________和_________。
1岁半小儿,至今不会独立行走,智力低下。体检;两眼距增宽,两眼外侧上斜,鼻梁低平,眼裂小,鼻翼不宽,舌伸出口外,小指向内弯曲,通贯手。最可能的诊断是
下列关于土地权利的说法中,正确的有()。
超过()的白炽灯、卤钨灯、荧光高压汞灯(包括镇流器)等不应直接安装在可燃装修或可燃构件上。
某污水处理厂二次沉淀池,圆形装配式预应力混凝土结构。池壁采用预应力缠丝丁艺,内径30m,池深4.2~5.2m,底板均厚350mm。池基础底板施工时需降低地下水,采用轻型井点,基坑开挖以机械为主,人工清底为辅。项目部施工负责人拟在池壁预制板吊装缠丝施加预应力
根据我国《水污染防治法》的规定,以下属于防止地下水污染的具体规定是()。
()是金融工程的核心内容之一。
“君子欲讷于言而敏于行”强调的品德因素是()。
多层印制电路板(4层或者4层以上)比双面板更适合于高速PCB布线,最主要的原因是(40)。
—Readthearticlebelow.—Inmostofthelines34-45thereisoneextraword.Itiseithergrammaticallyincorrectordoesnotf
最新回复
(
0
)