首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
A,B,C三个随机事件必相互独立,如果它们满足条件
A,B,C三个随机事件必相互独立,如果它们满足条件
admin
2018-06-14
73
问题
A,B,C三个随机事件必相互独立,如果它们满足条件
选项
A、A,B,C两两独立.
B、P(ABC)=P(A)P(B)P(C).
C、P(A—B)=1.
D、P(A—B)=0.
答案
C
解析
由三个事件相互独立的条件可知,(A)与(B)显然不对.
对于(C):由P(A一B)=1→P(AB)=1.由P(A)≥P(AB)=1→P(A)=1.同理P(B)=1,即P(B)=0.下面验证当P(A)=
=P(B)=0时,它们是否满足四个等式:
1)由P(B)=0→P(AB)≤P(B)=0→P(AB)=0=P(A)P(B);
2)由P(B)=0→P(BC)≤P(B)=0→P(BC)=0=P(B)P(C);
3)由
=P(C)=P(C)P(A).
由以上1),2),3)可知A,B,C两两独立.
4)由P(ABC)≤P(B)=0→P(ABC)=0=P(A)P(B)P(C).
由以上可知,A,B,C满足四个等式,故选C.
转载请注明原文地址:https://kaotiyun.com/show/G1W4777K
0
考研数学三
相关试题推荐
求微分方程xy’=的通解.
设f(x)在[a,b]上有定义,M>0且对任意的x,y∈[a,b],有|f(x)一f(y)|≤M|x一y|k.证明:当k>0时,f(x)在[a,b]上连续;
某个人参加跳高项目的及格选拔赛,规定一旦跳过指定高度就被认为及格而被入选,但是限制每人最多只能跳6次.若6次均未过竿,则认定其为落选.如果一位参试者在该指定高度的过竿率为0.6,求他在测试中所跳次数的概率分布.
已知数列{xn}满足:x0=25,xn=arctanxn-1(n=1,2,3,…),证明{xn}的极限存在,并求其极限.
已知ξ1=(0,0,1,0)T,ξ2=(-1,1,0,1)T是齐次线性方程组(Ⅰ)的基础解系,η1=(0,1,1,0)T,η2=(-1,2,2,1)T是齐次线性方程组(Ⅱ)的基础解系,求齐次线性方程组(Ⅰ)与(Ⅱ)的公共解.
已知ξ1=(-9,1,2,11)T,ξ2=(1,-5,13,0)T,ξ3=(-7,-9,24,11)T是方程组的三个解,求此方程组的通解.
设n阶矩阵A的伴随矩阵A*≠0,若ξ1,ξ2,ξ3,ξ4是非齐次方程组Ax=b的互不相等的解,则对应的齐次方程组Ax=0的基础解系
若A是对称矩阵,B是反对称矩阵,则AB是反对称矩阵的充要条件是AB=BA.
求下列二阶常系数齐次线性微分方程的通解:(Ⅰ)2y’’+y’-y=0;(Ⅱ)y’’+8y’+16y=0;(Ⅲ)y’’-2y’+3y=0.
当a,b取何值时,方程细有唯一解,无解,有无穷多解?当方程组有解时,求其解.
随机试题
Itwasasummerevening.Iwassittingbytheopenwindow,readinga【C1】________Suddenly,Iheardsomeonecrying,"Help!Help!
用于控制疟疾症状的最佳抗疟药是
最可能的诊断是假如CT检查发现患者为脑叶出血,血肿超过40ml,患者颅压增高症状明显加重,处于浅昏迷状态,应首选下列何项措施
A.左下6B.右上5C.右上1D.右上ⅣE.左上Ⅲ左上乳尖牙
患者,女,35岁。月经周期正常,惟月经量少、色红、质稠,经期鼻衄,量不多,色暗红,伴手足心热,潮热颧红,舌红少苔,脉细数。其证候是
资产组合M的期望收益率为18%,标准离差为27.9%;资产组合N的期望收益率为13%,标准离差率为1.2。投资者张某和赵某决定将其个人资金投资于资产组合M和N中,张某期望的最低收益率为16%,赵某投资于资产组合M和N的资金比例分别为30%和70%。
建设工程的屋面防水工程、有防水要求的卫生间、房间和外墙面的防渗漏,最低保修期限为()年。
8,17,24,37,()
《民法典》规定:“物权的种类和内容,由法律规定。”对此,下列说法中正确的是()
Thatshewas(i)_____rockclimbingdidnotdiminishher(ii)_____tojoinherfriendsonarock-climbingexpedition.
最新回复
(
0
)