首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在区间[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1.证明:存在ξ∈(0,3),使得f’(ξ)=0.
设函数f(x)在区间[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1.证明:存在ξ∈(0,3),使得f’(ξ)=0.
admin
2016-09-30
63
问题
设函数f(x)在区间[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1.证明:存在ξ∈(0,3),使得f’(ξ)=0.
选项
答案
因为f(x)在[0,3]上连续,所以f(x)在[0,2]上连续,故f(x)在[0,2]取到最大值M和最小值m,显然3m≤f(0)+f(1)+f(2)≤3M,即m≤1≤M,由介值定理,存在c∈[0,2],使得f(c)=1. 因为f(x)在[c,3]上连续,在(c,3)内可导,且f(c)=f(3)=1,根据罗尔定理,存在ξ∈(c,3)[*](0,3),使得f’(ξ)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/D8T4777K
0
考研数学三
相关试题推荐
利用概率测度的性质证明:在投掷两枚硬币的试验中,第一枚是均匀的当且仅当P({(H,H),(H,T)})=1/2;第二枚硬币是均匀的当且仅当P({(H,H),(T,H)})=1/2,其中H表示硬币出现的是正面,T表示硬币出现的是反面.
由概率的公理化定义证明:(1)P()=1-P(A);(2)P(A-B)=P(A)-P(AB).特别地,若A⊃B,则P(A-B)=P(A)-P(B).且P(A)≥P(B);(3)0≤P(A)≤1;(4)P(A∪B)
若函数f(x)在(a,b)内具有二阶导数,且f(x1)=f(x2)=f(x3),其中a<x1<x2<x3<b,证明:在(x1,x3)内至少有一点ε,使得f〞(ε)=0.
设f(x)是处处可导的奇函数,证明:对任-b>0,总存在c∈(-b,b)使得fˊ(c)=f(b)/b.
设函数f(x)=(x2-3x+2)sinx,则方程fˊ(x)=0在(0,π)内根的个数为()。
求密度为常数μ,半径为R的球体x2+y2+z2≤R2对位于点(0,0,a)(a>R)处单位质点的引力,并说明该引力如同将球的质量集中在球心时两质点间的引力.
求下列函数的n阶导数的一般表达式:(1)y=xn+a1xn-1+a2xn-2+…+an-1x+an(a1,a2,…,an都是常数);(2)y=sin2x;(3)y=x-1/x+1;(4)y=ln1+x/1-x.
用适当的变换将下列方程化为可分离变量的方程,并求出通解:;(2)(x+y)2yˊ=1;(3)xyˊ+y=yln(xy);(4)xyˊ+x+sin(x+y)=0.
随机试题
男性,28岁。2周来全身出现散在玫瑰色甲盖大的红斑,累及躯干、四肢掌跖,不痒。体检发现肛门附近有半环形排列的湿性丘疹,表面浸渍状。全身淋巴结肿大。应考虑
A、直接盖髓术B、间接盖髓术C、牙髓切断术D、牙髓开放术E、安抚治疗深龋备洞极敏感用
在环保工程与主体工程的建设中,要做到()。
我国法定的报关申报方式有()
阅读下面的文言文,完成后面各题。水仙水仙一花,予之命也。予有四命,各司一时:春以水仙兰花为命;夏以莲为命;秋以秋海棠为命;冬以腊梅为命。无此四花,是无命也。一季夺予一花,是夺
[*]
活动目录(Active Directory)是由组织单元、域、(36)和域森林构成的层次结构,安装活动目录要求分区的文件系统为(37)。
PASSAGEONEWhydidthegirlplaybasketballoverandoveragain?Whatisthemostperfectpatternoflifeaccordingtothepas
A、Histelephonewentoutoforder.B、Thebuyershadtoleavesoon.C、Hebegantoworkat8a.m.D、Hehadmadeanappointmentwit
Anewstudyshowsthatstudentslearnmuchbetterthroughanactive,iterative(反复的)processthatinvolvesworkingthroughtheirm
最新回复
(
0
)