首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在区间[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1.证明:存在ξ∈(0,3),使得f’(ξ)=0.
设函数f(x)在区间[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1.证明:存在ξ∈(0,3),使得f’(ξ)=0.
admin
2016-09-30
72
问题
设函数f(x)在区间[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1.证明:存在ξ∈(0,3),使得f’(ξ)=0.
选项
答案
因为f(x)在[0,3]上连续,所以f(x)在[0,2]上连续,故f(x)在[0,2]取到最大值M和最小值m,显然3m≤f(0)+f(1)+f(2)≤3M,即m≤1≤M,由介值定理,存在c∈[0,2],使得f(c)=1. 因为f(x)在[c,3]上连续,在(c,3)内可导,且f(c)=f(3)=1,根据罗尔定理,存在ξ∈(c,3)[*](0,3),使得f’(ξ)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/D8T4777K
0
考研数学三
相关试题推荐
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
设向量组α1,α3,α3线性无关,问常数a,b,c满足什么条件时,aα1-α2,bα2-α3,cα3-α1线性相关?
利用概率测度的性质证明:在投掷两枚硬币的试验中,第一枚是均匀的当且仅当P({(H,H),(H,T)})=1/2;第二枚硬币是均匀的当且仅当P({(H,H),(T,H)})=1/2,其中H表示硬币出现的是正面,T表示硬币出现的是反面.
设向量组α1,α2,…,αm线性无关,向量β1可用它们线性表示,β2不能用它们线性表示,证明向量组α1,α2,…,αm,λβ1+β2(λ为常数)线性无关.
设f(x)是处处可导的奇函数,证明:对任-b>0,总存在c∈(-b,b)使得fˊ(c)=f(b)/b.
根据级数收敛与发散的定义判别下列级数的收敛性,并求出其中收敛级数的和:
设证明:f(x,y)在点(0,0)处连续且可偏导,并求出fx(0,0)和fy(00)的值.
随机试题
A,心动过缓B,心动过速C,两者都有D,两者都无内脏牵拉、缺氧晚期可引起
下述有关“病因学A类药物不良反应”的特点中,最正确的是,
《公路水运工程试验检测机构信用评价标准》中,规定的失信行为有()项。
某多层砖砌体房屋,底层结构平面布置如图33—37(Z)所示,外墙厚370mm,内墙厚240mm,轴线均居墙中。窗洞口均为1500mm×1500mm(宽×高),门洞口除注明外均为1000mm×2400mm(宽×高)。室内外高差0.5m,室外地面距基础顶0.7
室内给水管道安装工程中,给水塑料管的安装要求包括()。
防火分区隔墙两侧的排烟防火阀,距墙表面应不大于()。
按照系统应用方式的不同,干粉灭火系统可分为()。
下列关于资产或负债计税基础的表述中,正确的有()。
操作风险分为()。
根据下列材料回答问题。2016年某省完成邮政通信业务总量6886.15亿元,同比增长56.6%,增幅比上年提高27.4个百分点。其中,完成邮政业务总量1879.99亿元,增长53.0%,增幅提高11.0个百分点;完成通信业务总量5006.16亿元,增长
最新回复
(
0
)