首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[a,b]上连续,在(a,b)内二阶可导,且f(a)=f(b)=0,=0. 证明: (Ⅰ)存在ξ∈(a,b),使得f(ξ)=0; (Ⅱ)存在η∈(a,b),使得f"(η)=f’(η).
设函数f(x)在[a,b]上连续,在(a,b)内二阶可导,且f(a)=f(b)=0,=0. 证明: (Ⅰ)存在ξ∈(a,b),使得f(ξ)=0; (Ⅱ)存在η∈(a,b),使得f"(η)=f’(η).
admin
2021-12-09
61
问题
设函数f(x)在[a,b]上连续,在(a,b)内二阶可导,且f(a)=f(b)=0,
=0.
证明:
(Ⅰ)存在ξ∈(a,b),使得f(ξ)=0;
(Ⅱ)存在η∈(a,b),使得f"(η)=f’(η).
选项
答案
(Ⅰ)令F(x)=[*],则F(x)在[a,b]上连续,在(a,b)内可导,且F(a)=F(b)=0,由罗尔定理,存在ξ∈(a,b),使得F’(ξ)=f(ξ)=0,即f(ξ)=0. (Ⅱ)令G(x)=f’(x)e
-x
,则G’(x)=[f"(x)-f’(x)]e
-x
. f(x)在[a,ξ]上用罗尔定理,存在ξ
1
∈(a,ξ),使得f’(ξ
1
)=0;f(x)在[ξ,b]上用罗尔定理,存在ξ
2
∈(ξ,b),使得f’(ξ
2
)=0;G(x)在[ξ
1
,ξ
2
]上连续,在(ξ
1
,ξ
2
)内可导,G(ξ
1
)=G(ξ
2
)=0,由罗尔定理,存在η∈(ξ
1
,ξ
2
)[*](a,b),使得G’(η)=[f"(η)-f’(η)]e
-x
=0,从而f"(η)=f’(η).
解析
转载请注明原文地址:https://kaotiyun.com/show/noR4777K
0
考研数学三
相关试题推荐
假设随机变量X与Y的相关系数为ρ,则ρ=1的充要条件是()
设A是m×n矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是
已知β1,β2是非齐次线性方程组Ax=b的两个不同的解,α1,α2是对应齐次线性方程组Ax=0的基础解系,k1,k2为任意常数,则方程组Ax=b的通解必是
已知二次型f(x1,x2,x3)=3x12+cx22+x32-2x1x2+2x1x3-2x2x3的秩为2,则c的值为().
考虑二元函数f(x,y)的四条性质:①f(x,y)在点(x0,y0)处连续,②f(x,y)在点(x0,y0)处的两个偏导数连续,③f(x,),)在点(x0,y0)处可微,④f(x,y)在点(x0,y0)处的两个偏导数存在。则有()
若事件A和B同时出现的概率P(AB)=0,则()
设函数y=f(x)具有二阶导数,且f’(x)>0,f(x)>0,△x为自变量x在点x0处的增量,△y与dy分别为f(x)在点x0处对应的增量与微分,若△x>0,则
设随机变量X—N(μ,σ2),σ>0,其分布函数F(x)的曲线的拐点为(a,b),则(a,b)为()
设f(x)分别满足如下两个条件中的任何一个:(Ⅰ)f(x)在x=0处三阶可导,且(Ⅱ)f(x)在x=0邻域二阶可导,f’(0)=0,且f’’(x)-xf’(x)=ex-1,则下列说法正确的是
设矩阵A=(a1,a2,a3,a4),其中a2,a3,a4线性无关,a1=2a2—a3,向量b—a1+a2+a3+a4,求方程组Ax=b的通解。
随机试题
简支梁AB的剪力图和弯矩图如图示,该梁正确的受力图是()。
现代工程咨询专用方法中,主要用于项目风险分析的是()
我公司出口某种商品,人民币单价为10000元/箱,现外商要求报美元价格,即期付款,当时,我国外汇交易中心的即期汇率为1美元=8.2641-8.2889元人民币。我方应报每箱多少美元?为什么?若折算错误,将受到哪些损失,损失为多少?
中国公民王某就职于国内A上市公司,2019年收入情况如下:(1)1月1日起将其位于市区的1套公寓住房按市价出租,每月收取不含税租金4000元。1月因卫生间漏水发生修缮费用900元,已取得合法有效的支出凭证。(2)在国内另一家公司担任独立
下列哪些事件不属于《合同法》的调整范围()
下列加点词语,读音不正确的一项是:
Asthebaby-boomergenerationcontemplatestheprospectoftheZimmerframetherehasneverbeenmoreinterestindelayingthep
算法的空间复杂度是指()。
InBritain,ifamancommitssomecrime,whatpunishmentwillheprobablyget?
Whatdoestheauthormeanbysaying"ForcolleaguesintheEast,thepainismorelikelytocomethroughapaycut"?According
最新回复
(
0
)