首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设线性方程组为 (1)讨论a1,a2,a3,a4取值对解的情况的影响. (2)设a1=a3,a2=a4=-k(k≠0),并且(-1,1,1)T和(1,1,-1)T都是解,求此方程组的通解.
设线性方程组为 (1)讨论a1,a2,a3,a4取值对解的情况的影响. (2)设a1=a3,a2=a4=-k(k≠0),并且(-1,1,1)T和(1,1,-1)T都是解,求此方程组的通解.
admin
2018-11-23
92
问题
设线性方程组为
(1)讨论a
1
,a
2
,a
3
,a
4
取值对解的情况的影响.
(2)设a
1
=a
3
,a
2
=a
4
=-k(k≠0),并且(-1,1,1)
T
和(1,1,-1)
T
都是解,求此方程组的通解.
选项
答案
(1)增广矩阵的行列式是一个范德蒙行列式,其值等于 [*]=(a
2
-a
1
)(a
3
-a
1
)(a
4
-a
1
)(a
3
-a
2
)(a
4
-a
2
)(a
4
-a
3
). 于是,当a
1
,a
2
,a
3
,a
4
两两不同时,增广矩阵的行列式不为0,秩为4,而系数矩阵的秩为3.因此,方程组无解. 如果a
1
,a
2
,a
3
,a
4
不是两两不同,则相同参数对应一样的方程.于是只要看有几个不同,就只留下几个方程. ①如果有3个不同,不妨设a
1
,a
2
,a
3
两两不同,a
4
等于其中之一,则可去掉第4个方程,得原方程组的同解方程组 [*] 它的系数矩阵是范德蒙行列式,值等于(a
2
-a
1
)(a
3
-a
1
)(a
3
-a
2
)≠0,因此方程组唯一解. ②如果不同的少于3个,则只用留下2个或1个方程,此时方程组无穷多解. (2)此时第3.4两个方程分别就是第1,2方程,可抛弃,得 [*] (-1,1,1)
T
和(1,1,-1)
T
都是解,它们的差(-2,0,2)
T
是导出组的一个非零解. 本题未知数个数为3,而系数矩阵[*]的秩为2(注意k≠0). 于是(-2,0,2)
T
构成导出组的基础解系,通解为: (-1,1.1)
T
+c(-2.0.2)
T
,c可取任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/G9M4777K
0
考研数学一
相关试题推荐
设f(x),ψ(x),ψ(x)是(-∞,+∞)内的单调增函数,证明:若ψ(x)≤f(x)≤ψ(x),则ψ(ψ(x))≤f(f(x))≤ψ(ψ(x)).
设二维随机变量(X,Y)的概率密度为则随机变量Z=X—Y的方差DZ为_________.
设f(x)在[a,b]上连续可导,f(a)=f(b)=0,且f2(x)dx=1,则xf(x)f′(x)dx=____________.
一容器由y=x2绕y轴旋转而成.其容积为72πm3,其中盛满水,水的比重为μ,现将水从容器中抽出64πm3,问需作功多少?
一个罐子里装有黑球和白球.黑、白球数之比为R:1,现有放回地一个接一个地抽球,直到抽到黑球为止,记X为所抽的白球数.这样做了n次以后,我们获得一组样本:X1,X2,…,Xn.基于此,求R的最大似然估计.
为了研究施肥和不施肥对某种农作物产量的影响独立地,选了13个小区在其他条件相同的情况下进行对比试验,得收获量如下表:设小区的农作物产量均服从正态分布且方差相等,求施肥与未施肥平均产量之差的置信度为0.95的置信区间(t0.975(11)=2.201,下
对随机变量X,已知EekX存在(k>0常数),证明:
(05年)已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1.证明:(I)存在ξ∈(0,1),使得f(ξ)=1一ξ;(Ⅱ)存在两个不同的点η,ζ∈(0,1),使得f’(η)f’(ζ)=1.
设齐次线性方程组其中a≠0,b≠0,n≥2.试讨论a,b为何值时,方程组仅有零解、有无穷多组解?在有无穷多组解时,求出全部解,并用基础解系表示全部解.
随机试题
记人国产非标准设备原价的有()。
构成保险人评估标的风险、审核承保能力、决定是否承保,以及是否需要分保、分保额度的重要参考依据的是( )。
法律解释既是法的实施和适用的前提,又是保证法的统一性、稳定性与社会发展相适应的媒介。下列对《中华人民共和国刑法》条文的解释属于扩充解释的是:
下列诗句,均出自白居易《琵琶行》的有()。
在5000年以前,美索不达米亚平原上的人们已经命名了20多个星座。之后,古巴比伦人继续划分天空的区域,不断提出新的星座。公元前1000年左右,古巴比伦人提出30个星座。后来,他们的星座划分传到古希腊人那里,又得到进一步的发展和补充。公元2世纪的时候,古希腊
设三阶矩阵A,B满足关系A-1BA=6A+BA,且A=,则B=_________
Whenitcomestoeatingsmartforyourheart,stopthinkingaboutshort-termfixesandsimplifylifewithastraightforwardappr
关于EDI,以下______是错误的。
TheDeclarationofIndependencewasadoptedbytheSecondContinentalCongressonJuly4,
Commoncoldisaviralinfectionthatstartsintheupperrespiratorytract,sometimesspreadstothelowerstructures,andmay
最新回复
(
0
)