首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶矩阵,α为n维列向量,若存在正整数m,使得Am-1α≠0,Amα=0(规定A0为单位矩阵),证明:向量组α,Aα1,…,Am-1α线性无关.
设A为n阶矩阵,α为n维列向量,若存在正整数m,使得Am-1α≠0,Amα=0(规定A0为单位矩阵),证明:向量组α,Aα1,…,Am-1α线性无关.
admin
2019-12-26
106
问题
设A为n阶矩阵,α为n维列向量,若存在正整数m,使得A
m-1
α≠0,A
m
α=0(规定A
0
为单位矩阵),证明:向量组α,Aα
1
,…,A
m-1
α线性无关.
选项
答案
【证法1】设有一组数k
0
,k
1
,…,k
m-1
,使 k
0
α+k
1
Aα+…+k
m-1
A
m-1
α=0, (1) 用A
m-1
左乘(1)式两边,得 k
0
A
m-1
α=0, 又A
m-1
α≠0,故k
0
=0.从而(1)式变为 k
1
Aα+…+k
m-1
A
m-1
α=0, (2) 再用A
m-2
左乘(2)式两边得k
1
A
m-1
α=0,又A
m-1
α≠0,故k
1
=0.以此类推,可得k
0
=0,k
1
=0,…,k
m-1
=0,从而α,Aα,…,A
m-1
α线性无关. 【证法2】 反证法,设α,Aα,…,A
m-1
α线性相关,则存在一组不全为零的数k
0
,k
1
,k
m-1
,使 k
0
α+k
1
Aα+…+k
m-1
A
m-1
α=0, 设从左起第一个不为零的数为k
i
,上式变为 k
i
A
i
α+k
i+1
A
i+1
α+…+k
m-1
A
m-1
α=0. 由于A
m
α=0,用A
m-i-1
左乘等式两边得k
i
A
m-1
α=0. 由于k
i
≠0,则A
m-1
α=0,矛盾,从而α,Aα,…,A
m-1
α线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/GGD4777K
0
考研数学三
相关试题推荐
设A为n阶正交矩阵,α和β都是n维实向量,证明:(I)内积(α,β)=(Aα,Aβ)).(2)长度‖α‖=‖Aα‖.
设X1,X2,…,X100是独立同服从参数为4的泊松分布的随机变量,是其算术平均值,则P{≤4.392}≈_____.
将一枚骰子重复掷n次,则当n→∞时,n次掷出点数的算术平均值依概率收敛于______。
设电子管寿命X的概率密度为若一台收音机上装有三个这种电子管,求:Y的分布函数.
行列式的第4行各元素的余子式之和的值为_______.
设函数f(x)=则f’(x)=________。
设曲线y=ax2+bx+c过原点,且当0≤x≤1时,y≥0,并与x轴所围成的图形的面积为,试确定a、b、c的值。使该图形绕x轴旋转一周所得的立体体积最小.
设z=f(x,y)二阶可偏导,=2,且f(x,0)=1,f’y(x,0)=x,则f(x,y)=______.
随机向区域D:0<y<(a>0)内扔一点,该点落在半圆内任何区域的概率与该区域的面积成正比,则落点与原点的连线与x轴的夹角小于的概率为______.
当x→0时,(1-cosx)ln(1+x2)是比xsinxn高阶的无穷小,而xsinxn是比ex2-1高阶的无穷小,则正整数n=________.
随机试题
小儿头围与胸围两者几乎相等的年龄是
吗啡的外周作用是
慢性肾盂肾炎早期肾功能减退的主要指标是
不能异生为糖的是A.甘油B.乳酸C.脂肪酸D.氨基酸E.丙酮酸
患者,女性,55岁,眼干、口干5年,右腮腺肿物3年,逐渐加重,现已出现咀嚼及吞咽困难。右腮腺肿物2cm×3cm大小,表面光滑,无压痛,未见面瘫征象。有类风湿关节炎病史15年。若对该患者行腮腺造影检查,其表现中不正确的是
根据《联合同国际货物销售合同公约》,下列表述正确的是( )。
根据《政府采购法》的规定,下列各项中,属于政府采购方式的有()。
企业在资产负债表日,应当按照规定对外币非货币性项目进行处理,采用资产负债表日即期汇率折算。因资产负债表日即期汇率与初始确认时或者前一资产负债表日即期汇率不同而产生的汇兑差额,计入当期损益。()
下列费用中,应当作为管理费用核算的有( )。
Judgingfromrecentsurveys,mostexpertsinsleepbehavioragreethatthereisvirtuallyanepidemicofsleepinessinthenatio
最新回复
(
0
)