首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶矩阵,α为n维列向量,若存在正整数m,使得Am-1α≠0,Amα=0(规定A0为单位矩阵),证明:向量组α,Aα1,…,Am-1α线性无关.
设A为n阶矩阵,α为n维列向量,若存在正整数m,使得Am-1α≠0,Amα=0(规定A0为单位矩阵),证明:向量组α,Aα1,…,Am-1α线性无关.
admin
2019-12-26
71
问题
设A为n阶矩阵,α为n维列向量,若存在正整数m,使得A
m-1
α≠0,A
m
α=0(规定A
0
为单位矩阵),证明:向量组α,Aα
1
,…,A
m-1
α线性无关.
选项
答案
【证法1】设有一组数k
0
,k
1
,…,k
m-1
,使 k
0
α+k
1
Aα+…+k
m-1
A
m-1
α=0, (1) 用A
m-1
左乘(1)式两边,得 k
0
A
m-1
α=0, 又A
m-1
α≠0,故k
0
=0.从而(1)式变为 k
1
Aα+…+k
m-1
A
m-1
α=0, (2) 再用A
m-2
左乘(2)式两边得k
1
A
m-1
α=0,又A
m-1
α≠0,故k
1
=0.以此类推,可得k
0
=0,k
1
=0,…,k
m-1
=0,从而α,Aα,…,A
m-1
α线性无关. 【证法2】 反证法,设α,Aα,…,A
m-1
α线性相关,则存在一组不全为零的数k
0
,k
1
,k
m-1
,使 k
0
α+k
1
Aα+…+k
m-1
A
m-1
α=0, 设从左起第一个不为零的数为k
i
,上式变为 k
i
A
i
α+k
i+1
A
i+1
α+…+k
m-1
A
m-1
α=0. 由于A
m
α=0,用A
m-i-1
左乘等式两边得k
i
A
m-1
α=0. 由于k
i
≠0,则A
m-1
α=0,矛盾,从而α,Aα,…,A
m-1
α线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/GGD4777K
0
考研数学三
相关试题推荐
设A为n阶正交矩阵,α和β都是n维实向量,证明:(I)内积(α,β)=(Aα,Aβ)).(2)长度‖α‖=‖Aα‖.
设4阶矩阵A=(α,γ1,γ2,γ3),B=(β,γ1,γ2,γ3),|A|=2,|B|=3,求|A+B|.
设A与B分别是m,n阶矩阵,证明=(一1)mn|A||B|.
设曲线y=ax2+bx+c过原点,且当0≤x≤1时,y≥0,并与x轴所围成的图形的面积为,试确定a、b、c的值。使该图形绕x轴旋转一周所得的立体体积最小.
若行列式的第j列的每个元素都加1,则行列式的值增加Aij.
微分方程满足y|x=1=1的特解为________.
设函数f(x)在x=2的某邻域内可导,且f’(x)=ef(x),f(2)=1,则f"’(2)=________。
设随机变量X的概率密度为a,b,c的值;
微分方程xy’+y=0满足初始条件y(1)=2的特解为__________.
随机试题
下列表述正确的一项是()
重型再生障碍性贫血的诊断标准包括
关于条件反射的论述,错误的是
甲国发生内战,乙国拟派民航包机将其侨民接回,飞机需要飞越丙国领空。根据国际法相关规则,下列哪些选项是正确的?(2011年卷一第75题)
某香烟生产企业,经过分析后,决定采用产品开发策略,针对本国现有的女性吸烟人群推出一款新型的香烟。为使产品打进市场,在对市场进行深入调查分析后,决定以白领女性顾客群体作为其目标市场。产品最初推向市场时,为使自己的产品获得稳定的销路,给消费者留下美好的印象,该
把下面六个图形分为两类,使得每一类图形都有各自的共同特征或规律,分类正确的一项是:
2011年4月20日,海南离岛免税购物政策在三亚的免税店试点实施,免税商品受到热捧,销售收入大增。免税商品销售收入的提高,是因为()。
刑事强制权是为了保证刑事诉讼的顺利进行,由公安机关对犯罪嫌疑人、被告人行使的强制权力。()
甲、乙、丙、丁四个同学排成一排,从左到右数,如果甲不排在第一个位置上,乙不排在第二个位置上,丙不排在第三个位置上,丁不排在第四个位置上,那么不同的排法共有多少种?()
Whereonestageofchilddevelopmenthasbeenleftout,ornotsufficientlyexperienced,thechildmayhavetogobackandcaptu
最新回复
(
0
)