首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶矩阵,α为n维列向量,若存在正整数m,使得Am-1α≠0,Amα=0(规定A0为单位矩阵),证明:向量组α,Aα1,…,Am-1α线性无关.
设A为n阶矩阵,α为n维列向量,若存在正整数m,使得Am-1α≠0,Amα=0(规定A0为单位矩阵),证明:向量组α,Aα1,…,Am-1α线性无关.
admin
2019-12-26
120
问题
设A为n阶矩阵,α为n维列向量,若存在正整数m,使得A
m-1
α≠0,A
m
α=0(规定A
0
为单位矩阵),证明:向量组α,Aα
1
,…,A
m-1
α线性无关.
选项
答案
【证法1】设有一组数k
0
,k
1
,…,k
m-1
,使 k
0
α+k
1
Aα+…+k
m-1
A
m-1
α=0, (1) 用A
m-1
左乘(1)式两边,得 k
0
A
m-1
α=0, 又A
m-1
α≠0,故k
0
=0.从而(1)式变为 k
1
Aα+…+k
m-1
A
m-1
α=0, (2) 再用A
m-2
左乘(2)式两边得k
1
A
m-1
α=0,又A
m-1
α≠0,故k
1
=0.以此类推,可得k
0
=0,k
1
=0,…,k
m-1
=0,从而α,Aα,…,A
m-1
α线性无关. 【证法2】 反证法,设α,Aα,…,A
m-1
α线性相关,则存在一组不全为零的数k
0
,k
1
,k
m-1
,使 k
0
α+k
1
Aα+…+k
m-1
A
m-1
α=0, 设从左起第一个不为零的数为k
i
,上式变为 k
i
A
i
α+k
i+1
A
i+1
α+…+k
m-1
A
m-1
α=0. 由于A
m
α=0,用A
m-i-1
左乘等式两边得k
i
A
m-1
α=0. 由于k
i
≠0,则A
m-1
α=0,矛盾,从而α,Aα,…,A
m-1
α线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/GGD4777K
0
考研数学三
相关试题推荐
设α1,α2,…,αs是一个n维向量组,β和γ也都是n维向量.判断下列命题的正确性.①如果β,γ都可用α1,α2,…,αs线性表示,则β+γ也可用α1,α2,…,αs线性表示.②如果β,γ都不可用α1,α2,…,αs线性表示,则β+γ也
在“充分而非必要”、“必要而非充分”、“充分必要”三者中选择一个正确的填入下列空格内(1)函数f(x)在[a,b]上连续是f(x)在[a,b]上存在原函数的________条件;(2)函数f(x)在[a,b]上有界是f(x)在[a,b]上可积的____
z=f(xy)+yg(x2+y2),其中f,g二阶连续可导,则=________.
设当x→0时,(1-cosx)ln(1+x2)是比xsinxn高阶的无穷小,而xsinxn是比ex2-1高阶的无穷小,则正整数n等于
设一电路由三个电子元件并联而成,且三个元件工作状态相互独立,每个元件的无故障工作时间服从参数为λ的指数分布,设电路正常工作的时间为T,求T的分布函数.
求由方程2xz一2xyz+ln(xyz)=0所确定的函数z=z(x,y)的全微分.
A是3阶矩阵,特征值为1,2,2.则|4A-1一E|=_________.
设f(x)在[0,1]上二阶连续可导且f(o)=f(1),又|f"(x)|≤M,证明:|f’(x)|≤.
求曲线y=cosx()与x轴围成的区域绕x轴、y轴形成的几何体体积.
确定a,b,使得x一(a+bcosx)sinx当x→0时为阶数尽可能高的无穷小.
随机试题
肥厚型梗阻型心肌病的特征性体征是
中国第一个临终关怀研究中心成立于
关于内脏神经的叙述,错误的是
治疗脆弱拟杆菌感染所致吸入性肺脓肿首选的抗菌药物是
原始凭证不得外借,其他单位确需借用原始凭证时,经本单位负责人批准可以复制,并办理登记手续。()
期间费用包括()。
2013年5月5日,甲公司因中标一项桥梁工程向乙公司订制一批特种水泥预制构件。双方在合同中约定:图纸和钢筋由甲公司提供;水泥由乙公司提供;加工费为150万元,甲公司预付50万元;交货日期为2013年9月1日;交付地点为甲公司的工地。合同签订后,甲公司签发了
资料显示,电视并不能集中人的注意力。电视观众中,40%的人同时在阅读,21%的人同时在做家务,13%的人在吃喝,12%的人在玩赏他物,10%在烹饪,9%在写作,8%在打电话。而网络用户中,55%的人在使用计算机时不做任何的其他事,只有6%的人同时在打电话,
求
Whatisthepurposeofholdingthefirst-everGirls20-Summit?
最新回复
(
0
)