首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明: (Ⅰ)对任意正整数n,都有 成立; (Ⅱ)设an=1+—lnn(n=1,2,…),证明{an}收敛。
证明: (Ⅰ)对任意正整数n,都有 成立; (Ⅱ)设an=1+—lnn(n=1,2,…),证明{an}收敛。
admin
2017-01-21
97
问题
证明:
(Ⅰ)对任意正整数n,都有
成立;
(Ⅱ)设a
n
=1+
—lnn(n=1,2,…),证明{a
n
}收敛。
选项
答案
(Ⅰ)令[*]=x,则原不等式可化为 [*]<ln(1+x)< x,x > 0。 先证明ln(1+x)<x,x>0。 令f(x)=x—ln(1+x)。由于 f’(x)=1—[*]>0,x>0, 可知f(x)在[0,+∞)上单调递增。 又由于f(0)=0,因此当x>0时,f(x)>f(0)=0。也即 In(1+x)<x,x>0。 [*] 可知g(x)在[0,+∞)上单调递增。 又因g(0)=0,因此当x>0时,g(x)>g(0)=0。即 [*] 再代入[*]=x,即可得到所需证明的不等式。 (Ⅱ)a
n+1
—a
n
=[*] 可知数列{a
n
}单调递减。 又由不等式 [*] 因此数列{a
n
}是有界的。由单调有界收敛定理可知数列{a
n
}收敛。
解析
转载请注明原文地址:https://kaotiyun.com/show/GGH4777K
0
考研数学三
相关试题推荐
设A为n阶非零矩阵,A*是A的伴随矩阵,AT是A的转置矩阵,当A*=AT时,证明丨A丨≠0.
设α=(1,0,-1)T,矩阵A=ααT,n为正整数,则丨aE-An丨=___________.
证明:当0
曲线y=xe1/x2
证明级数在(0,+∞)上收敛且一致收敛.
已知f(x)在x=0的某个邻域内连续,且f(0)=0,则在点x=0处f(x)().
设an>0(n=1,2,…,且an收敛,常数λ∈(0,π/2),则级数(-1)n(ntanλ/n)a2n
设函数f(x,y)在点P(xo,yo)处连续,且f(xo,yo)>0(或f(xo,yo)<0),证明:在点P的某个邻域内,f(x,y)>0(或f(x,y)<0).
0由级数收敛知,因为级数收敛,因此其通项趋于0.
随机试题
A.输血后1~2小时内出现发热反应,寒战、高热,伴皮肤潮红,症状可自行缓解B.输入几毫升全血后即呼吸困难、喘鸣,面色潮红,腹痛、腹泻C.输入几十毫升血后,出现腰背酸痛、高热、休克、血红蛋白尿等D.输血后出现头部剧烈胀痛,呼吸困难,发绀,大量血性泡沫痰
尿糖阳性,除糖尿病外尚有下列哪些可能
A肝素B枸橼酸钠CEDTA—K2D草酸铵E双草酸盐适用于凝血功能测定的抗凝剂为
治疗伤寒应首选的药物是()
下列各项交易事项的会计处理中,体现实质重于形式原则的有()。
______aroundtheWaterCube,wewerethentakentoseetheBird’sNestforthe2008OlympicGames.
王某潜入某工厂仓库盗窃,将仓库货物(价值2万元)扔到院墙外,准备一会儿翻墙出去再捡,偶尔经过此处的刘某发现该货物无人看管,遂将其拿走,据为己有。10分钟后,王某来到院墙外,发现货物已无踪影。对于王某、刘某行为定性,下列哪一选项是正确的?
判断A与B是否合同,其中
网络系统分层设计中层次之间的上联带宽与下一级带宽之比一般控制在
ThenovelPrideandPrejudicewaswrittenbythefamouswomanwriter______
最新回复
(
0
)