首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设g(x)在[a,b]连续,f(x)在[a,b]二阶可导,f(a)=f(b)=0,且对x(a≤x≤b)满足f″(x)+g(x)f′(x)-f(x)=0.求证:f(x)=0 (x∈[a,b]).
设g(x)在[a,b]连续,f(x)在[a,b]二阶可导,f(a)=f(b)=0,且对x(a≤x≤b)满足f″(x)+g(x)f′(x)-f(x)=0.求证:f(x)=0 (x∈[a,b]).
admin
2016-10-26
43
问题
设g(x)在[a,b]连续,f(x)在[a,b]二阶可导,f(a)=f(b)=0,且对
x(a≤x≤b)满足f″(x)+g(x)f′(x)-f(x)=0.求证:f(x)=0 (x∈[a,b]).
选项
答案
若f(x)在[a,b]上不恒为零,则f(x)在[a,b]取正的最大值或负的最小值. 不妨设f(x
0
)=[*]f(x)>0,则x
0
∈(a,b)且f′(x
0
)=0,f″(x
0
)≤0[*]f″(x
0
)+g(x
0
) f′(x
0
)-f(x
0
)<与已知条件矛盾.同理,若f(x
1
)=[*]f(x)<0,同样得矛盾.因此f(x)≡0([*]x∈[a,b]).
解析
转载请注明原文地址:https://kaotiyun.com/show/GGu4777K
0
考研数学一
相关试题推荐
-5dx-2dy
[*]
用分部积分法求下列不定积分:
微分方程xy’+y=0满足条件y(1)=1的解是y=________.
设α,β为3维列向量,矩阵A=ααT+ββT,其中αT,βT分别是α,β的转置.证明:若α,β线性相关,则秩r(A)
设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B.证明B可逆;
设齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有4个命题:①若Ax=0的解均足Bx=0的解,则秩(A)≥秩(B);②若秩(A)≥秩(B),则Ax=0的解均是Bx=0的解;③符Ax=0与Bx=0同解,则秩(A)
考虑一元二次方程x2+Bx+C=0,其中B,c分别是将一枚骰子接连掷两次先后出现的点数.求该方程有实根的概率p和有重根的概率q.
设已知线性方程组Ax=b存在2个小吲的解.求λ,a;
(1998年试题,十)已知二次曲面方程x2+ay2+z2+2bxy+2xz+2yz=4可以经过正交变换化为椭圆柱面方程η2+4ζ2=4,求a,b的值和正交矩阵P.
随机试题
药物有升降浮沉的药性,治法亦有升降浮沉的因势利导,参合两者即为升降浮沉配伍。下列不属于升降浮沉配伍的是
以下选项中符合集中供热的锅炉和炉子规定要求的是()。
细水雾灭火的稳压泵频繁启动的原因不包括()。
下列关于证券承销的说法中,错误的是()。
关于银行远期外汇交易的下列说法中错误的是()。
小学生在课外开展的气象观察、标本制作等活动属于()。
阅览室看书的学生中,男生占25%,又来了一些学生后,学生总人数增加25%,男生占总数的24%,男生增加()。
对于接受捐赠的存货,如果捐赠方提供了有关凭据,则存货的实际成本为()。
要限制宏命令的操作范围,在创建宏时应定义的是( )。
In18th-centurycolonial(殖民地的)America,thosewhowantedtobecomedoctorseitherlearnedaspersonalstudentsfromestablished
最新回复
(
0
)