首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A,B均是3阶非零矩阵,且A2=A,B2=B,AB=BA=0,证明0和1必是A与B的特征值,并且若α是A关于λ=1的特征向量,则α必是B关于λ=0的特征向量.
已知A,B均是3阶非零矩阵,且A2=A,B2=B,AB=BA=0,证明0和1必是A与B的特征值,并且若α是A关于λ=1的特征向量,则α必是B关于λ=0的特征向量.
admin
2016-10-20
91
问题
已知A,B均是3阶非零矩阵,且A
2
=A,B
2
=B,AB=BA=0,证明0和1必是A与B的特征值,并且若α是A关于λ=1的特征向量,则α必是B关于λ=0的特征向量.
选项
答案
由于A
2
=A,则A的特征值只能是0或1,又因(A-E)A=0,A≠0,知齐次方程组(A-E)x=0有非零解,故|A-E|=0,即λ=1必是A的特征值.据AB=0,B≠0,得Ax=0有非零解,那么|0E-A|=|A|=0,故0必是A的特征值. 由于已知条件的对称性,0与1必是B的特征值.对于Aα=α,同时左乘矩阵B,得 Bα=B(Aα)=(BA)α=0α=0=0α, 所以α是矩阵B关于λ=0的特征向量.
解析
转载请注明原文地址:https://kaotiyun.com/show/GMT4777K
0
考研数学三
相关试题推荐
假设E,F是两个事件,(1)已知P(E)=0.4,P(F)=0.6,P(E∪F)=0.8,计算P(E|F)和P(F|E);(2)已知P(E)=0.3,P(F)=0.5,P(E|F)=0.4,计算P(E∩F),P(E∪F),P(F|E).
设α1,α2,…,αm-1(m≥3)线性相关,向量组α2,…,αm线性无关,试讨论α1能否由α2,α3,…,αm-1线性表示?
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
一根长为l的棍子在任意两点折断,试计算得到的三段能围成三角形的概率.
掷两枚均匀的骰子,已知它们出现的点数各不相同,求其中有一个点数为4的概率.
α1,α2是向量组(Ⅱ)的一个极大无关组,(Ⅱ)的秩为2,故(Ⅰ)的秩为2.由于(Ⅰ)线性相关,从而行列式|β1,β2,β3|=0,由此解得a=3b;又β3可由向量组(Ⅱ)线性表示,从而β3可由α1,α2线性表示,所以向量组α1,α2,β3线性相关,于是行
α1,α2是向量组(Ⅱ)的一个极大无关组,(Ⅱ)的秩为2,故(Ⅰ)的秩为2.由于(Ⅰ)线性相关,从而行列式|β1,β2,β3|=0,由此解得a=3b;又β3可由向量组(Ⅱ)线性表示,从而β3可由α1,α2线性表示,所以向量组α1,α2,β3线性相关,于是行
已知向量组α1=(1,2,3,4),α2=(2,3,4,5),α3=(3,4,5,6),α4=(4,5,6,t),且r(α1,α2,α3,α4)=2,则t=________.
设向量组B:β1,β2,…,βr能由向量组A:α1,α2,…,αs线性表示为:其中,K为r×s矩阵,且向量组A线性无关,证明:向量组B线性无关的充要条件是矩阵K的秩r(K)=r.
随机试题
暗适应过程中
简便、可靠的辅助检查是抗复发治疗采用的药物是
A.攒竹B.肺俞C.肝俞D.脾俞E.大杼可用于治疗急性腰扭伤的穴位是
关于法人,下列哪一表述是正确的?(卷三2012年真题试卷第2题)
位于市区的甲汽车轮胎厂,2014年5月实际缴纳增值税和消费税362万元。其中包括位于县城的乙企业代收代缴的消费税30万元、进口环节增值税和消费税50万元、被税务机关查补的增值税12万元,补交增值税同时缴纳的滞纳金和罚款共计8万元。甲厂本月应向所在市区税务机
2010年山东省经济实现平稳较快发展。初步核算,全省实现生产总值(GDP)39416.2亿元,按可比价格计算,比上年增长12.5%。其中,第一产业增加值增长3.6%;第二产业增加值增长13.4%;第三产业增加值增长13.0%。产业结构调整取得明显成效,三次
实验小学举办学生书法展,学校的橱窗里展出了每个年级学生的书法作品,其中有28幅不是五年级的,有24幅不是六年级的,五、六年级参展的书法作品共有20幅。一、二年级参展的作品总数比三、四年级参展的作品总数少4幅。一、二年级参展的书法作品共有多少幅?
斯腾伯格认为爱情由三个成分组成,并形成了七种形式。一见钟情属于哪种形式?()
设矩阵A=,则A3的秩为_________。
WriteonyourANSWERSHEETONEacompositionofabout200wordsonthefollowingtopicRainisanimportantresourceoftheu
最新回复
(
0
)