首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2008年] 求函数u=x2+y2+z2在约束条件z=x2+y2和x+y+z=4下的最大值与最小值.
[2008年] 求函数u=x2+y2+z2在约束条件z=x2+y2和x+y+z=4下的最大值与最小值.
admin
2019-04-05
59
问题
[2008年] 求函数u=x
2
+y
2
+z
2
在约束条件z=x
2
+y
2
和x+y+z=4下的最大值与最小值.
选项
答案
本题是一道条件极值的常规题,这里约束条件有两个,可构造双参数的拉 格朗日函数,也可构造单参数的拉格朗日函数求解. 解一 由约束条件z=x
2
+y
2
,x+y+z=4构造双参数的拉格朗日函数,即 F(x,y,z,λ,μ)=x
2
+y
2
+z
2
+λ(x
2
+y
2
一z)+μ(x+y+z一4). 于是[*] 由式①、式②解得x=y(但λ=一1,μ=0不是解).由式④、式⑤得到 z=x
2
+y
2
=2x
2
, z=4—2x, 则2x
2
=4—2x,即x
2
+x一2=0,亦即(x+2)(x一1)=0,故x
1
=一2,x
2
=1,因而z
1
=8, z
2
=2. 将(x
1
,y
1
,z
1
)=(一2,一2,8),(x 2,y 2,z 2)=(1,1,2)代入函数U中,得到u(x
1
,y
1
,z
1
)=72, u(x
,y
2
,z
2
)=6,故所求的最大值为72,最小值为6. 解二 由约束条件z=x
2
+y
2
和x+y+z=4得到x
2
+y
2
=4一x—y,构造单参数的拉格朗日函数,即 F(x,y,λ)=x
2
+y
2
+(x
2
+y
2
)
2
+λ(x
2
+y
2
+x+y一4), 于是 [*] 解得(x
1
,y
1
)=(一2,一2),(x
2
,y
2
)=(1,1),则z
1
=8,z
2
=2,所求最大值为72,最小值为6.
解析
转载请注明原文地址:https://kaotiyun.com/show/GPV4777K
0
考研数学二
相关试题推荐
求下列函数的导数y′:(Ⅰ)y=arctan:(Ⅱ)y=sinχ.
设f和g为连续可微函数,u=f(x,xy),v=g(x+xy),求.
设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内可导,且f(0)=0,f(1)=
解下列微分方程:(Ⅰ)y"-7y’+12y=x满足初始条件的特解;(Ⅱ)y"+a2y=8cosbx的通解,其中a>0,b>0为常数;(Ⅲ)y"’+y"+y’+y=0的通解.
设试判别函数在原点(0,0)处,是否可偏导?偏导数是否连续?是否可微?
求下列函数的导数与微分:(Ⅰ)设y=,求dy;(Ⅱ)设y=arctaneχ-;(Ⅲ)设y=(χ-1),求y′,与y′(1).
求下列变限积分函数的导数:(Ⅰ)F(x)=,求F’(x)(x≥0);(Ⅱ)设f(x)处处连续,又f’(0)存在,F(x)=,求F"(x)(-∞<x<+∞).
随机试题
德育是思想教育、政治教育、法纪教育和道德教育的总和,不是政治教育的代名词。()
正常情况下能够一次或几次使用就被消费掉的有形物品(如文具等),被称为()
阅读《诗经.氓》中的文字,然后回答下列小题。桑之未落,其叶沃若。于嗟鸠兮,无食桑葚。于嗟女兮,无与士耽。士之耽兮,犹可说也。女之耿兮,不可说也。桑之落矣,其黄而陨。自我徂尔,三岁食贫。淇水汤汤,渐车帷裳。女也不爽,士贰其行。士也罔极,二三其德。这里
C4~5骨折脱位合并脊髓严重损伤
A.上唇B.下唇C.上颌骨D.下颌骨E.颧骨成釉细胞瘤好发于
事故报告的内容有()。
根据《中华人民共和国会计法》规定,会计年度自()。
在计算机网络中,某IP地址的前24位为网络号,后8位为主机后,对应的子网掩码为(40),它属于(41)地址的默认子网掩码。
全加器是由两个加数Xi和Yi以及低位来的进位Ci-1作为输入,产生向高位的进位Ci以及本位利Si的逻辑电路。(65)和(66)分别是进位和本位和的正确逻辑表达式。全加器亦可通过半加器来实现,此时Si=(67)。若某计算机采用8位带符号补码表示整数,则可由8
Thepotentialofcomputersforincreasingthecontroloforganizationsorsocietyovertheirmembersandforinvadingtheprivac
最新回复
(
0
)