首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,一1,一3)T,α4=(0,0,3,a)T,β=(1,b,3,2)T, ①a取什么值时α1,α2,α3,α4线性相关?此时求α1,α2,α3,α4的一个极大线性无关组,并且把其余向量用
α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,一1,一3)T,α4=(0,0,3,a)T,β=(1,b,3,2)T, ①a取什么值时α1,α2,α3,α4线性相关?此时求α1,α2,α3,α4的一个极大线性无关组,并且把其余向量用
admin
2020-05-16
65
问题
α
1
=(1,0,0,1)
T
,α
2
=(1,1,0,0)
T
,α
3
=(0,2,一1,一3)
T
,α
4
=(0,0,3,a)
T
,β=(1,b,3,2)
T
,
①a取什么值时α
1
,α
2
,α
3
,α
4
线性相关?此时求α
1
,α
2
,α
3
,α
4
的一个极大线性无关组,并且把其余向量用该极大线性无关组线性表出.
②在α
1
,α
2
,α
3
,α
4
线性相关的情况下,b取什么值时β可用α
1
,α
2
,α
3
,α
4
线性表示?写出一个表示式.
选项
答案
两个小题都关系到秩,α
1
,α
2
,α
3
,α
4
线性相关[*](α
1
,α
2
,α
3
,α
4
)<4;β可用α
1
,α
2
,α
3
,α
4
线性表示§r(α
1
,α
2
,α
3
,α
4
,β)=r(α
1
,α
2
,α
3
,α
4
).因此应该从计算这两个秩着手.以α
1
,α
2
,α
3
,α
4
,β为列向量构造矩阵(α
1
,α
2
,α
3
,α
4
,β),然后用初等行变换把它化为阶梯形矩阵: [*] ①r(α
1
,α
2
,α
3
,α
4
)<4[*]a=3.α
1
,α
2
,α
3
,α
4
是α
1
,α
2
,α
3
,α
4
的一个极大线性无关组,并且α
4
=一6α
1
+6α
2
—3α
3
. ②r(α
1
,α
2
,α
3
,α
4
,β)=r(α
1
,α
2
,α
3
,α
4
)=3,则b=2.β=一7α
1
+8α
2
—3α
3
.
解析
转载请注明原文地址:https://kaotiyun.com/show/GQx4777K
0
考研数学三
相关试题推荐
设A是n×m矩阵,B是m×n矩阵,其中n
设随机变量(X,Y)的联合密度为求:X,Y的边缘密度;
设函数z=(1+ey)cosx—yey,证明:函数z有无穷多个极大值点,而无极小值点.
设有微分方程y’-2y=φ(x),其中在(-∞,+∞)求连续函数y(x),使其在(-∞,1)及(1,+∞)内都满足所给的方程,且满足条件y(0)=0.
设y=y(x,z)是由方程ex+y+z=x2+y2+z2确定的隐函数,则=________.
设A、B均为n阶方阵,证明:|AB|=|A|.|B|.
求幂级数的收敛域_______.
幂级数的收敛域为______.
(1989年)幂级数的收敛域是______.
幂级数的收敛半径为__________.
随机试题
巴赫金认为创造了“复调小说”的作家是
若事件A、B是互斥事件,则【】
我国现有五个经济特区,他们是()。
用于配制培养液的三蒸水或超纯水宜现用现配,其存放时间最长不宜超过
合同转让的条件是()。
(101+103+…+199)-(90+92+…+188)=()。
就a,b的不同取值情况讨论方程组何时无解、何时只有唯一解、何时有无数个解,在有无数个解时求其通解.
分页式存储管理中,地址转换工作是由什么完成的?
WhoisBarbaraRivers?
Women’srolesinliteraturehavenotevolvednearlyasrapidlyaswomen’schangingrolesinsociety,andwhilethesechan
最新回复
(
0
)