首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有微分方程y’-2y=φ(x),其中在(-∞,+∞)求连续函数y(x),使其在(-∞,1)及(1,+∞)内都满足所给的方程,且满足条件y(0)=0.
设有微分方程y’-2y=φ(x),其中在(-∞,+∞)求连续函数y(x),使其在(-∞,1)及(1,+∞)内都满足所给的方程,且满足条件y(0)=0.
admin
2019-03-12
91
问题
设有微分方程y’-2y=φ(x),其中
在(-∞,+∞)求连续函数y(x),使其在(-∞,1)及(1,+∞)内都满足所给的方程,且满足条件y(0)=0.
选项
答案
当x<1时,y’-2y=2的通解为y=C
1
e
2x
-1,由y(0)=0得C
1
=1,y=e
2x
-1, 当x>1时,y’-2y=0的通解为y=C
2
e
2x
,根据给定的条件, y(1+0)=C
2
e
2
=y(1-0)=e
2
-1,解得C
2
=1-e
-2
,y=(1一e
-2
)e
2x
, 补充定义y(1)=e
2
-1,则得在(-∞,+∞)内连续且满足微分方程的函数 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/A5P4777K
0
考研数学三
相关试题推荐
交换下列积分的积分顺序:
设闭区域D={(x,y)|x2+y2≤y,x≥0},又f(x,y)为D上的连续函数,且求f(x,y).
设f(x)是以ω为周期的连续函数,证明:一阶线性微分方程y’+ky=f(x)存在唯一的以ω为周期的特解,并求此特解,其中k为常数.
设函数f(x)在[0,1]二阶可导,且f(0)=f’(0)=f’(1)=0,f(1)=1.求证:存在ξ∈(0,1)使|f"(ξ)|≥4.
设f(x)在(0,+∞)三次可导,且当x∈(0,+∞)时|f(x)|≤M0,|f"’(x)|≤M3,其中M0,M3为非负常数,求证f"(x)在(0,+∞)上有界.
已知随机变量X的概率密度为f(x)=Aex(B-x)(一∞<x<+∞),且E(X)=2D(X),试求:(Ⅰ)常数A,B之值;(Ⅱ)E(X2+eX);(Ⅲ)Y=|(X—1)|的分布函数F(y).
设随机变量,且P{|X|≠|Y|}=1.(I)求X与Y的联合分布律,并讨论X与Y的独立性;(Ⅱ)令U=X+Y,V=X—Y,讨论U与V的独立性.
设有四个编号分别为1,2,3,4的盒子和三只球,现将每个球随机地放人四个盒子,记X为至少有一只球的盒子的最小号码.若当X=k时,随机变量Y在[0,k]上服从均匀分布,k=1,2,3,4,求P{y≤2}.
设二次型xTAx=ax12+2x22-x32+8x1x2+2bx1x3+2cx2x3,实对称矩阵A满足AB=O,其中B=(Ⅰ)用正交变换将二次型化为标准形,并写出所作的正交变换:(Ⅱ)判断矩阵A与B是否合同,并说明理由。
设f(x)=验证f(x)在[0,2]上满足拉格朗日中值定理的条件,求(0,2)内使得f(2)-f(0)=2f’(ξ)成立的ξ.
随机试题
比色法测定啤酒中的铁时,测定的波长为()。
某茶庄将普通茶叶谎称为名贵茶叶,高价卖给顾客。该茶庄的行为构成()
65岁女性,跌倒后右手掌着地,腕部疼痛,肿胀,压痛,无反常活动,但餐叉状畸形明显,该患者最可能的诊断是
可引起拟胆碱作用和组胺样作用的药物有
地基与基础工程和主体结构分部工程评为优质时,其子分部工程必须全部优质。()
建设工程未经竣工验收而发包人擅自使用后,发包方发现工程质量存在下列问题,其中应由承包方承担相应责任的是()。
你认为,在学生心目中。一个好的班主任形象是什么样的?
(2007年试题,5)设函数f(x)在(0,+∞)上具有二阶导数,且f’’(x)>0,令un=f(n)=1,2,…,n,则下列结论正确的是().
阅读以下有关传统局域网络运行和维护的叙述,将应填入(n)处的字句写在对应栏内。在对网络运行及维护前首先要了解网络,包括识别网络对象的硬件情况、判别局域网的拓扑结构和信道访问方式、确定网络互联以及用户负载等。常见的3种拓扑结构是星形、(1)与(2)拓扑结
在E-R图中,用来表示实体的图形是
最新回复
(
0
)