首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A是m×n矩阵,其m个行向量是齐次线性方程组Cx=0的基础解系,B是m阶可逆矩阵,证明BA的行向量也是齐次方程组Cx=0的基础解系.
已知A是m×n矩阵,其m个行向量是齐次线性方程组Cx=0的基础解系,B是m阶可逆矩阵,证明BA的行向量也是齐次方程组Cx=0的基础解系.
admin
2016-10-20
61
问题
已知A是m×n矩阵,其m个行向量是齐次线性方程组Cx=0的基础解系,B是m阶可逆矩阵,证明BA的行向量也是齐次方程组Cx=0的基础解系.
选项
答案
因为A的行向量是Cx=0的解,即CA
T
=0,那么C(BA)
T
=CA
T
B
T
=OB
T
=0. 可见BA的行向量是方程组Cx=0的解. 由于A的行向量是基础解系,所以A的行向量线性无关,于是m=r(A)=n-r(C). 又因B是可逆矩阵,r(BA)=r(A)=m=n-r(C),所以BA的行向量线性无关,其向量个数正好是n-r(C),从而是方程组Cx=0的基础解系.
解析
转载请注明原文地址:https://kaotiyun.com/show/GlT4777K
0
考研数学三
相关试题推荐
将13个分别写有A、A、A、C、E、H、I、I、M、M、N、T、T的卡片随意地排成一行,求恰好排单词“MATHEMATICIAN”的概率.
证明[*]
利用函数的凹凸性,证明下列不等式:
证明:双曲线xy=a2上任一点处的切线与两坐标轴构成的三角形的面积都等于2a2.
用适当的变换将下列方程化为可分离变量的方程,并求出通解:;(2)(x+y)2yˊ=1;(3)xyˊ+y=yln(xy);(4)xyˊ+x+sin(x+y)=0.
求下列微分方程的通解:(1)y〞-2yˊ=0;(2)y〞-3yˊ+2y=0;(3)y〞+4y=0;(4)y〞-4yˊ+5y=0;(5)y〞-6yˊ+9y=0;(6)y〞+2yˊ+ay=0;(7)y〞+6y〞+10yˊ=0;
设二随机变量(X,Y)服从二维正态分布,则随机变量U=X+Y与V=X-Y不相关的充分必要条件为().
已知下列齐方程组(I)(Ⅱ)当方程组中的参数m,n,t为何值时,方程组(I)与(Ⅱ)同解.
已知下列齐方程组(I)(Ⅱ)求解方程组(I),用其导出组的基础解系表示通解;
设f(x)的定义域为[1,+∞),f(x)在[1,+∞)可积,并且满足方程f(x)=∫1+∞f(x)dx。讨论f(x)的单调性.
随机试题
简述实施低速发展战略的原因。
引起气性坏疽的常见原因是
(2008)设单位反馈(即负反馈传递函数为1的闭环系统)的开环传递函数为在参考输入为r(t)=2t时系统的稳态误差为()。
基金管理公司在董事会中引进一定比例的独立董事主要目的在于()
下列选项中,不属于信贷人员分析客户的供应阶段的进货渠道时应考虑的是()。
下列各项中,将会导致经营杠杆效应最大的情况是()。
2019年年初A居民企业以实物资产500万元直接投资于B居民企业,取得B企业30%的股权。2020年11月,A企业将持有B企业的股权全部转让。取得收入600万元,转让时B企业在A企业投资期间形成的未分配利润为400万元。关于A企业该项投资业务的说法,正确的
【2011-37】认为学业求助是缺乏能力的表现、是对自我价值构成威胁的学生,其成就目标定向类型是()。
下列操作系统中,(41)没有网络功能。
Faces,likefingerprints,areunique.Didyou【C1】______wonderhowitispossibleforusto【C2】______people?Evenaskilledwrite
最新回复
(
0
)