首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1994年)设f(x)具有二阶连续导数,f(0)=0,f’(0)=1,且[xy(x+y)一f(x)y]dx+[f’(x)+x2y]dy=0为一全微分方程,求f(x)及此全微分方程的通解.
(1994年)设f(x)具有二阶连续导数,f(0)=0,f’(0)=1,且[xy(x+y)一f(x)y]dx+[f’(x)+x2y]dy=0为一全微分方程,求f(x)及此全微分方程的通解.
admin
2018-07-01
59
问题
(1994年)设f(x)具有二阶连续导数,f(0)=0,f’(0)=1,且[xy(x+y)一f(x)y]dx+[f’(x)+x
2
y]dy=0为一全微分方程,求f(x)及此全微分方程的通解.
选项
答案
由于[xy(x+y)一f(x)y]dx+[f’(x)+x
2
y]dy=0是全微分方程,则 [*] 即 x
2
+2xy一f(x)=f(x)+2xy f"(x)+f(x)=x
2
这是一个二阶线性常系数非齐次微分方程,可求得其通解为 f(x)=C
1
cosx+C
2
sinx+x
2
一2 由f(0)=1及f’(0)=1,可求得C
1
=2,C
2
=1,从而得 f(x)=2cosx+sinx+x
2
一2 于是原方程为 [xy
2
一(2cosx+sinx)y+2y]dx+(一2sinx-+cosx+2x+x
2
y)dy=0 其通解是 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Gtg4777K
0
考研数学一
相关试题推荐
f(x)在[0,1]上有连续导数,且f(0)=0,证明:存在ξ∈[0,1],使得
确定常数λ,使在右半平面x>0上的向量A(x,y)=2xy(x4+y2)λi—x2(x4+y2)λj为某二元函数u(x,y)的梯度,求u(x,y).
设有一小山,取它的底面所在的平面为xOy坐标面,其底部所占的区域为D={(x,y)|x2+y2一xy≤75),小山的高度函数为h(x,y)=75一x2一y2+xy设M(x0,y0)为区域D上的一个点,问h(x,y)在该点沿平面上沿什么方向的方向导数最大
过点M(1,2,一1)且与直线垂直的平面方程是___________.
设f(x)是周期为2的周期函数,它在区间(一1,1]上的定义为,则f(x)的傅里叶(Fourier)级数在x=1处收敛于___________.
若二阶常系数线性齐次微分方程y"+ay’+by=0的通解为y=(C1+C2x)ex,则非齐次方程y"+ay’+by=x满足条件y(0)=2,y’(0)=0的解为y=___________.
设试证:对任意的常数λ>0,级数收敛.
求微分方程的通解.
设φ1(x),φ2(x)为一阶非齐次线性微分方程y’+P(x)y=Q(x)的两个线性无关的特解,则该方程的通解为().
(1999年)设求
随机试题
A/全程血尿B/初期血尿C/终末血尿D/镜下血尿E/血色素尿肾挫伤后多见
男性,60岁,间歇性无痛性肉眼血尿3个月,伴蚯蚓状血块,膀胱镜检查:右输尿管口喷血,B超可见右肾轻度积水,首先应考虑
()几乎与银行的活期储蓄同样便利。
根据《股票发行与交易管理条例》的规定,下列事项中上市公司无需作为重大事件公布的是()。
奥苏伯尔的学习理论认为,学生学习的实质是()。
运用马克思关于社会总资本再生产的有关原理,分析我国经济生活中存在的部分生产资料和消费品的供过于求对社会再生产的影响及应采取的对策。
“此处不留人,自有留人处”给了懒人正大光明的借口,给了懦夫逃避现实的理由。可残酷的是,生活不相信借口,竞争没有理由。换个环境不如换个心情,与其精神胜利,不如自我激励。换个环境,就像把淡水鱼放进海里,空间是大了,可是命也危矣。苛求环境,不如苛求自己,我们改变
为了防止谷贱伤农,向汉文帝提出入粟拜爵建议的是()。
目前,基层民主自治体系的主要内容是
有如下程序:#includeusingnamespacestd;classTV{public:TV(ints=41):size(s){}
最新回复
(
0
)