首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求证:ex+e-x+2cosx=5恰有两个根.
求证:ex+e-x+2cosx=5恰有两个根.
admin
2019-08-06
77
问题
求证:e
x
+e
-x
+2cosx=5恰有两个根.
选项
答案
引入函数f(x)=e
x
+e
-x
+2cosx一5,则f(x)是(一∞,+∞)上的连续偶函数,且f(0)=一1<0,f’(x)=e
x
一e
-x
一2sinx,从而f’(0)=0.又f’’(x)=e
x
+e
-x
一2cosx=[*]+2(1一cosx)>0[*]成立,由此可见f’(x)当x≥0时单调增加,于是f’(x)>f’(0=:0当x>0时成立.这表明f(x)在x≥0是单调增加的.注意f(π)=e
π
+e
-π
一7>2
3
一7=1>0,故根据闭区间上连续函数的性质可知f(x)=0在(0,π)内至少有一个根,结合f(x)在x≥0严格单调增加可知f(x)=0有且仅有一个正根.由f(x)为(一∞,+∞)上偶函数,f(x)=0还有且仅有一个负根.故方程e
x
+e
-x
+2cosx=5恰有两个根.
解析
转载请注明原文地址:https://kaotiyun.com/show/GwJ4777K
0
考研数学三
相关试题推荐
设的一个特征值为λ1=,其对应的特征向量为求常数a,b,c;
设其中f(s,t)二阶连续可偏导,求du及
设f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0.f’+(a)f’-(b)>0,且g(x)≠0(x∈[a,b]),g’’(x)≠0(a<x<b),证明:存在ξ∈(a,b),使得
设随机变量(X,Y)的联合密度函数为(1)求P(X>2Y);(2)设Z=X+Y,求Z的概率密度函数.
设二阶常系数线性微分方程y"+αy’+βy=γex的一个特解为y=e2x+(1+x)ex,试确定常数α,β,γ,并求该方程的通解.
设总体X服从(a,b)上的均匀分布,X1,X2,…,Xn是取自X的简单随机样本,则未知参数a,b的矩估计量为=___________.
口袋内有四个同样的球,分别标有号码1,2,3,4.每次从中任取一个球(每次取后放回去),连续两次.如果第i次取到球上的编号记为ai,i=1,2,记事件A表示事件“a1≥4a2”,则该试验的样本空间Ω=___________;事件A=___________;
袋中有大小相同的10个球,其中6个红球,4个白球,现随机地抽取两次,每次取一个,定义两个随机变量X,Y如下:试就放回与不放回两种情形,求出(X,Y)的联合分布律.
求下列定积分:∫01
(2011年)证明方程恰有两个实根.
随机试题
多尿期的标志是()
共同参与型护患关系模式的特点包括()。
上海甲公司作为卖方和澳门乙公司订立了一项钢材购销合同,约定有关合同的争议在中国内地仲裁。乙公司在内地和澳门均有营业机构。双方发生争议后,仲裁庭裁决乙公司对甲公司进行赔偿。乙公司未在规定的期限内履行仲裁裁决。关于甲公司对此采取的做法,下列哪些选项是正确的?
我国21世纪初可持续发展的基本原则有()。
某施工工地脚手架垮塌,造成10人重伤,根据《生产安全事故报告和调查处理条例》规定,该事故的等级属于()。
茶叶含有咖啡因,故容易失眠的人睡前不宜饮用浓茶。()
在当前社会,人与人之间的激烈竞争在所难免,但不少人因为得失心较重,做事时不惜违反公德伦理和规则秩序,最后不仅很难占到便宜,有时反而会害了自己。随着制度越来越健全,太重得失而逾规的行为只能是搬起石头砸自己的脚。比如,运动员们每日辛苦训练就是为了在比赛中获得奖
有以下计算公式若程序前面已经在命令行中包含math.h文件,不能够正确计算上述公式的程序段是
It’sself-evidentthatnoonewouldhavetimetoknoweverythinggoingonintheworld.
Peoplehavewonderedforalongtimehowtheirpersonalitiesandbehaviorsareformed.It’snoteasytoexplainwhyonepersoni
最新回复
(
0
)