首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上连续,在(a,b)上可导,且f(a)=f(b)=1,证明:必存在ξ,η∈(a,b)使得eη-ξ[f(η)+f'(η)]=1。
设f(x)在[a,b]上连续,在(a,b)上可导,且f(a)=f(b)=1,证明:必存在ξ,η∈(a,b)使得eη-ξ[f(η)+f'(η)]=1。
admin
2019-01-19
103
问题
设f(x)在[a,b]上连续,在(a,b)上可导,且f(a)=f(b)=1,证明:必存在ξ,η∈(a,b)使得e
η-ξ
[f(η)+f'(η)]=1。
选项
答案
设F(x)=e
x
f(x),由已知f(x)及e
x
在[a,b]上连续,在(a,b)内可导,均满足拉格朗日中值定理条件,因此,存在ξ,η∈(a,b),使得 F(b)一F(a)=e
b
f(b)一e
a
f(a)=F'(η)(b一a)=e
η
[f'(η)十f(η)](b一a)及 e
b
一e
a
=e
ξ
(b一a)。 将以上两式相比,且由f(a)=f(b)=1,则有 e
η-ξ
[f(η)+f'(η)]=1。
解析
转载请注明原文地址:https://kaotiyun.com/show/H1P4777K
0
考研数学三
相关试题推荐
设总体X~N(0,σ2),X1,X2,…,X9为来自X的简单随机样本,试确定σ的值,使得概率P(1<.
设某种商品每周的需求量X是服从区间[10,30]上均匀分布的随机变量,而经销商店进货量为区间[10,30]中的某一整数,商店每销售一单位商品可获利润500元.若供大于求则削价处理,每处理一单位商品亏损100;若供不应求,则可从外部调剂供应,此时每单位仅获利
设x1,x2,x3,x4是来自总体X~N(1,2)的简单随机样本,且k(Xi一4)2服从χ2(n)分布,则常数k和x2分布的自由度n分别为().
已知A是3×4矩阵,r(A)=1,若α1=(1,2,0,2)T,α2=(1,一1,a,5)T,α3=(2,a,一3,一5)T,α4=(一1,一1,1,a)T线性相关,且可以表示齐次方程Ax=0的任一解,求Ax=0的基础解系.
设A是n阶反对称矩阵.(1)证明:对任何n维列向量α,恒有αTAα=0.(2)证明:对任何非零常数c,矩阵A+cE恒可逆.
设函数f(x)在(0,+∞)内连续,f(1)=,且对一切的x、t∈(0,+∞)满足条件:∫1xtf(u)du=t∫1xf(u)du+x∫1tf(u)du.求函数f(x)的表达式.
设随机变量X的概率密度为f(x)=求方差D(X)和D(X2).
设X1,X2,…,Xn是来自总体X的简单随机样本,是样本均值,C为任意常数,则().
假设某射手的命中率为p(0<p<1),他一次一次地对同一目标独立地射击直到恰好两次命中目标为止,以X表示首次命中已射击的次数,以Y表示射击的总次数,试求:(1)随机变量X和Y的联合概率分布;(2)随机变量Y关于X的条件概率分布;
二次型f(x1,x2,x3)=x12+3x22+x32+2x1x2+2x1x3+2x2x3,则f的正惯性指数为____________.
随机试题
有次跟朋友聊天,聊到学生问题层出不穷时,我感叹道:“班主任每天就像消防员一样到处救火,费时费力还不见效,这样的日子何时才是个头啊。”朋友真诚地跟我说:“你换一个角度来看学生问题,或许问题就不是问题,而是你跟问题的关系了。问题产生了,成了既定事实,无论你是骂
沙门氏菌的形态特征是革兰氏阳性杆菌,无芽孢,无荚膜,多数有动力,周生鞭毛。
糖尿病患者为什么多尿?
混凝土抗冻等级是按()龄期的试件用快冻试验方法测定的。
李某为客户提供一项工程设计,客户按照合同规定向李某支付工程设计费60000元。客户应代扣代缴个人所得税()元。
3~6岁儿童注意发展的特征是什么?
全球化背景下,发展中国家的比较优势和竞争优势问题引起广泛关注。列昂惕夫曾用“列昂惕夫悖论”对俄林等提出的资源禀赋说提出挑战,质疑为何统计数据表明美国是出口劳动力密集型产品、进口资本密集型产品的国家。解释这一谜团对于发展中国家的发展最关键的启示是(
有关《中华人民共和国行政许可法》,下列哪一项说法是不正确的?()
一、注意事项1.监考老师发给你的测试材料分为两部分:试题本和答题纸。2.测试开始前。请在试题本和答题纸上指定位置先填写好自己的姓名、准考证号等项内容。然后再开始答题。3.申论考试与传统的作文考试不同,是分析驾驭材料的能力与表达能力并重的考试。作答参考
PreparingforTestsI.Preparingfortests—Tounderstandthe【T1】oftests【T1】______—Thecommonsenserequiredforbothaphysic
最新回复
(
0
)