首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
假设某种型号的螺丝钉的重量是随机变量,期望值为50克,标准差为5克.求: (Ⅰ)100个螺丝钉一袋的重量超过5.1千克的概率; (Ⅱ)每箱螺丝钉装有500袋,500袋中最多有4%的重量超过5.1千克的概率.
假设某种型号的螺丝钉的重量是随机变量,期望值为50克,标准差为5克.求: (Ⅰ)100个螺丝钉一袋的重量超过5.1千克的概率; (Ⅱ)每箱螺丝钉装有500袋,500袋中最多有4%的重量超过5.1千克的概率.
admin
2018-11-23
50
问题
假设某种型号的螺丝钉的重量是随机变量,期望值为50克,标准差为5克.求:
(Ⅰ)100个螺丝钉一袋的重量超过5.1千克的概率;
(Ⅱ)每箱螺丝钉装有500袋,500袋中最多有4%的重量超过5.1千克的概率.
选项
答案
(Ⅰ)假设X
i
表示袋中第i颗螺丝钉的重量,i=1,…,100,则X
1
,…,X
100
相互独立同分布,EX
i
=50,DX
i
=5
2
.记一袋螺丝钉的重量为S
100
,则 S
100
=[*],ES
100
=5000,DS
100
=2500. 应用列维-林德伯格中心极限定理可知S
100
近似服从正态分布N(5000,50
2
),且 P{S
100
>5100}=1-P{S
100
≤5100}=1-[*] ≈1-Ф(2)=0.02275. (Ⅱ)设500袋中重量超过5.1千克的袋数为Y,则Y服从参数n=500,p=0.02275的二项分布.EY=11.375.DY=11.116.应用棣莫弗.拉普拉斯中心极限定理,可知Y近似服从参数μ=11.375,σ
2
=11.116的正态分布,于是 [*] ≈Ф(2.59)=0.995.
解析
转载请注明原文地址:https://kaotiyun.com/show/H2M4777K
0
考研数学一
相关试题推荐
设X~N(μ,σ2),其中σ2已知,μ为未知参数.从总体X中抽取容量为16的简单随机样本,且μ的置信度为0.95的置信区间中的最小长度为0.588,则σ2=___________·
已知X,Y为随机变量且P{X≥0,Y≥0}=,P{X≥0}=P{Y≥0}=,设A={max(X,Y)≥0},B={max(X,Y)<0,min(X,Y)<0},C={max(X,Y)≥0,min(X,Y)<0},则P(A)=________,P(B)=__
设随机变量X的数学期望EX=75,方差DX=5,由切比雪夫不等式估计得P{|X-75|≥k}≤0.05,则k=_______
函数u=x2一2yz在点(1,一2,2)处的方向导数最大值为___________.
设f(x,y)是定义在区域0≤x≤1,0≤y≤1上的二元连续函数,f(0,0)=-1,求极限
一容器由y=x2绕y轴旋转而成.其容积为72πm3,其中盛满水,水的比重为μ,现将水从容器中抽出64πm3,问需作功多少?
设ex-ysin(x+z)=0,试求
设二维随机变量(X,Y)的概率密度为问X与Y是否独立?|X|与|Y|是否独立?
设X1,X2,…,Xn是同分布的随机变量,且EX1=0,DX1=1.不失一般性地设X1为连续型随机变量.证明:对任意的常数λ>0,有.(不熟者可对n=2证明)
(15年)设总体X的概率密度为其中θ为未知参数.X1,X2,…,Xn为来自该总体的简单随机样本.(I)求θ的矩估计量;(Ⅱ)求θ的最大似然估计量.
随机试题
临床试验管理规范的缩写是
关于药品入库验收记录表述错误的是
按土地交易方式,可以将土地市场分为()。
根据税收征管法律制度的规定,下列各项中,属于税收强制执行措施的有()。
美国《科学》杂志指出,21世纪以来,全球平均气温一直在持续上升。其结论主要依据政府间气候变化专门委员会于2013年发布的一份报告以及对美国国家海洋与大气管理局运作的全球温度记录进行的修正记录(纠正已知的海洋表面温度记录的偏差,吸纳新的延伸到北极的陆基监测站
EgyptianwinehasanextensivehistorywithinthehistoryofEgyptiancivilization.Grapeswerenot(1)_____tothelandscapeof
常用的防火墙可以分为______和应用网关两大类。
最常用的一种基本数据模型是关系数据模型,它的表示应采用()。
打开工作簿文件Exc.xlsx,对工作表“图书销售情况表”内数据清单的内容按主要关键字“图书类别”的降序次序和次要关键字“经销部门”的降序次序进行排序,完成对各类图书销售数量(册)总计的分类汇总(分类字段为“图书类别”,汇总方式为“求和”,选定汇总项为“数
WhichuniversitydidhistorianPatriceHigonnetgraduatefrom?
最新回复
(
0
)