首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
假设某种型号的螺丝钉的重量是随机变量,期望值为50克,标准差为5克.求: (Ⅰ)100个螺丝钉一袋的重量超过5.1千克的概率; (Ⅱ)每箱螺丝钉装有500袋,500袋中最多有4%的重量超过5.1千克的概率.
假设某种型号的螺丝钉的重量是随机变量,期望值为50克,标准差为5克.求: (Ⅰ)100个螺丝钉一袋的重量超过5.1千克的概率; (Ⅱ)每箱螺丝钉装有500袋,500袋中最多有4%的重量超过5.1千克的概率.
admin
2018-11-23
80
问题
假设某种型号的螺丝钉的重量是随机变量,期望值为50克,标准差为5克.求:
(Ⅰ)100个螺丝钉一袋的重量超过5.1千克的概率;
(Ⅱ)每箱螺丝钉装有500袋,500袋中最多有4%的重量超过5.1千克的概率.
选项
答案
(Ⅰ)假设X
i
表示袋中第i颗螺丝钉的重量,i=1,…,100,则X
1
,…,X
100
相互独立同分布,EX
i
=50,DX
i
=5
2
.记一袋螺丝钉的重量为S
100
,则 S
100
=[*],ES
100
=5000,DS
100
=2500. 应用列维-林德伯格中心极限定理可知S
100
近似服从正态分布N(5000,50
2
),且 P{S
100
>5100}=1-P{S
100
≤5100}=1-[*] ≈1-Ф(2)=0.02275. (Ⅱ)设500袋中重量超过5.1千克的袋数为Y,则Y服从参数n=500,p=0.02275的二项分布.EY=11.375.DY=11.116.应用棣莫弗.拉普拉斯中心极限定理,可知Y近似服从参数μ=11.375,σ
2
=11.116的正态分布,于是 [*] ≈Ф(2.59)=0.995.
解析
转载请注明原文地址:https://kaotiyun.com/show/H2M4777K
0
考研数学一
相关试题推荐
设D是由x2+y2≤a2,y≥0所确定的上半圆域,则D的形心的y坐标=_________。
设函数μ(x,y,z)=1+x2/6+y2/12+z2/18,单位向量则=___________.
以yOz坐标面上的平面曲线段y=f(x)(0≤z≤h)绕z轴旋转所构成的旋转曲面和xOy坐标面围成一个无盖容器,已知它的底面积为16πcm2,如果以3cm3/s的速率把水注入容器,水表面的面积以πcm2/s增大,试求曲线y=f(z)的方程.
假设:(1)函数y=f(x)(0≤x<+∞)满足条件f(0)=0和0≤f(x)≤ex一1;(2)平行于y轴的动直线MN与曲线y=f(x)和y=ex一1分别相交于点P1和P2;(3)曲线y=f(x)、直线MN与x轴所围封闭图形的面积S恒等于线段P1P2
设为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵.(1)计算PTDP,其中(Ek为k阶单位矩阵);(2)利用(1)的结果判断矩阵B一CTA-1C是否为正定矩阵,并证明你的结论.
某厂生产的各台仪器,可直接出厂的占0.7,需调试的占0.3,调试后可出厂的占0.8,不能出厂的(不合格品)占0.2.现生产了n(n≥2)台仪器(设每台仪器的生产过程相互独立),求:(1)全部能出厂的概率;(2)恰有2台不能出厂的概率;
设随机变量X在区间(一1,1)上服从均匀分布,Y=X2,求(X,Y)的协方差矩阵和相关系数.
(06年)设总体X的概率密度为其中θ是未知参数(0<θ<1).X1,X2,…,Xn为来自总体X的简单随机样本,记N为样本值x1,x2,…,xn中小于1的个数.求θ的最大似然估计.
(02年)设总体X的概率分别为其中θ是未知参数,利用总体X的如下样本值3,1,3,0,3,1,2,3求θ的矩估计值和最大似然估计值.
(97年)已知的一个特征向量.(1)试确定参数a、b及特征向量ξ所对应的特征值;(2)问A能否相似于对角阵?说明理由.
随机试题
下列各项对未分配利润的表述中,正确的有()。
OnThursdayafternoonMrs.Clarke,dressedforgoingout,tookherhandbagwithhermoneyandherkeyinit,pulledthedoorbeh
毛果芸香碱属,
小李因殴打小马受到公安局处罚,公安局鉴定小马为轻微伤。小马认为自己是重伤,以公安局对小李处罚过轻为由向法院提起行政诉讼。法院在诉讼期间对小马的伤势重新鉴定,结论为轻伤。法院应当如何处理?()
新建商品房客户营销方式,大体上分为电话营销、()以及交易后的客户关系维护。[2009年考试真题]
项目建设方案一般包括()等。
按照评价角度的不同,下列属于财务现金流量表的有()。
导游服务集体的任务是()旅游接待计划。
现阶段我们制定路线、方针、政策的根本出发点是社会主义初级阶段理论。()
Yourhairwantscuttingyou’dbetterhaveitdonetomorrow,
最新回复
(
0
)