首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x),g(x)在区间[a,b]上连续,且f(x)单调增加,0≤g(x)≤1.证明: (Ⅰ)0≤∫axg(t)dt≤(x一a),x∈[a,b] (Ⅱ)f(x)dx≤∫abf(x)g(x)dx.
设函数f(x),g(x)在区间[a,b]上连续,且f(x)单调增加,0≤g(x)≤1.证明: (Ⅰ)0≤∫axg(t)dt≤(x一a),x∈[a,b] (Ⅱ)f(x)dx≤∫abf(x)g(x)dx.
admin
2021-01-19
54
问题
设函数f(x),g(x)在区间[a,b]上连续,且f(x)单调增加,0≤g(x)≤1.证明:
(Ⅰ)0≤∫
a
x
g(t)dt≤(x一a),x∈[a,b]
(Ⅱ)
f(x)dx≤∫
a
b
f(x)g(x)dx.
选项
答案
(Ⅰ)由0≤g(x)≤1得 0≤∫
0
x
g(t)dt≤∫
0
x
1dt=(x一a) x∈[a,b] (Ⅱ)令F(u)=∫
a
u
f(x)g(x)dx一[*]f(x)dx 只要证明F(b)≥0,显然F(a)=0,只要证明F(u)单调增,又 F’(u)=f(u)g(u)一f(a+∫
a
u
g(t)dt)g(u) =g(u)[f(u)一g(a+∫
a
b
g(t)dt)] 由(Ⅰ)的结论0≤∫
a
x
g(t)dt≤(x一a)知,a≤a+∫
a
x
g(t)dt≤x.即 a≤a+∫
a
u
g(t)dt≤u 又f(x)单调增加,则f(u)≥f(a+∫
a
b
g(t)dt),因此,F’(u)≥0,F(b)≥0. 故 [*]f(x)dx≤∫
a
b
f(x)g(x)dx.
解析
转载请注明原文地址:https://kaotiyun.com/show/H584777K
0
考研数学二
相关试题推荐
设y=y(x)是由方程x2+y=tan(x-y)确定的函数,且满足y(0)=0.则y’’(0)=_________.
[*]
计算二重积分其中D是由x轴、y轴与曲线围成的区域,a>0,b>0。
设f(x)在[a,b]上二阶可导,且f(A)=f(B),f’’(x)≠0,则().
曲线的弧长s=____________。
函数f(x,y)=ln(x2+y2一1)的连续区域是_______.
设α,β,γ1,γ2,γ3都是4维列向量,且|A|=|α,γ1,γ2,γ3|=4,|B|=|β,γ1,γ2,γ3|=21,则|A+B|=________.
微分方程y"一4y=e2x的通解为y=______.
函数f(x,y)=x2y(4一x一y)在由直线x+y=6,x轴和y轴所围成的闭区域D上的最小值是___________.
计算下列定积分:
随机试题
根据《法律援助条例》规定,请求支付劳动报酬的,向()的法律援助机构提出申请。
治疗湿热黄疽可选用
痢疾初起治疗当忌
肢端肥大症患者血钙较高时常提示
实验室测定血清总钙的参考方法是
下列关于磁共振图像矩阵的叙述,正确的是
某公司去年有员工830人,今年男员工人数比去年减少6%,女员工人数比去年增加5%,员工总数比去年增加3人,问今年男员工有多少人?()
下面是某求助者MMPI-2的测验结果24项版本的HAMD量表,其因子数量为()。(A)2(B)3(C)5(D)7
案例:某学校初二年级的数学备课组针对“勾股定理”一课的教学进行讨论,拟定了如下的教学目标:①掌握勾股定理的内容,体会数形结合思想;②学会运用勾股定理。为了落实上述教学目标,甲、乙两位教师对此给出了不同的教学思路。
纯粹从阅读角度看,今天我们的阅读数量是很可观的。我们每天看微博,看新闻客户端,看微信朋友圈,看QQ日志……这最终都能累积为每天的阅读量。碎片化的阅读,确实便利了信息获取,但若是从人文涵养的角度看,碎片化本身意味着不全面,再加上网络阅读的简化,人们由此实现的
最新回复
(
0
)