首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)在[0,1]连续,在(0,1)可导,f(0)=0,0<f′(χ)<1,χ∈(0,1). 证明:[∫01f(χ)dχ]2>∫01f3(χ)dχ.
设f(χ)在[0,1]连续,在(0,1)可导,f(0)=0,0<f′(χ)<1,χ∈(0,1). 证明:[∫01f(χ)dχ]2>∫01f3(χ)dχ.
admin
2017-11-09
97
问题
设f(χ)在[0,1]连续,在(0,1)可导,f(0)=0,0<f′(χ)<1,χ∈(0,1).
证明:[∫
0
1
f(χ)dχ]
2
>∫
0
1
f
3
(χ)dχ.
选项
答案
令F(χ)=[∫
0
χ
f(t)dt]
2
-∫
0
χ
f
3
(t)dt,易知F(0)=0,且F(z)在[0,1]可导,则 F′(χ)=2f(χ)∫
0
χ
f(t)dt-f
3
(χ)=f(χ)[2∫
0
χ
f(t)dt-f
2
(χ)]. 记g(χ)=2∫
0
χ
f(t)dt-f
2
(χ),则g(χ)在(0,1)可导,即 g′(χ)=2f(χ)-2f(χ)f′(χ)=2f(χ)[1-f′(χ)], 由于0<f′(χ)<1,χ∈(0,1),则f(χ)在[0,1]内递增. 则当0<χ≤1时,f(χ)>f(0)=0, 于是g′(χ)>0,χ∈(0,1),则g(χ)在[0,1]递增, 即当0<χ≤1时,g(χ)>g(0)=0, 所以,当0<χ≤1时,F′(χ)=f(χ)g(χ)>0, 即F(χ)在0≤χ≤1时递增,故当0<χ≤1时,F(χ)>F(0)=0, 特别地,有F(1)>0,即[∫
0
1
f(χ)dχ]
2
-∫
0
1
f
3
(χ)dχ>0, 所以[∫
0
1
f(χ)dχ]
2
>∫
0
1
f
3
(χ)dχ.
解析
转载请注明原文地址:https://kaotiyun.com/show/H6X4777K
0
考研数学三
相关试题推荐
设函数其中g(x)二阶连续可导,且g(0)=1.(1)确定常数a,使得f(x)在x=0处连续;(2)求f’(x);(3)讨论f’(x)在x=0处的连续性.
设A为m阶正定矩阵,B为m×n实矩阵.证明:BTAB正定的充分必要条件是r(B)=n.
设A为实对称矩阵,且A的特征值都大于零.证明:A为正定矩阵.
a,b取何值时,方程组有解?
设二维随机变量(X,Y)服从二维正态分布,且X~N(1,32),Y~N(0,42),且X,Y的相关系数为(1)求E(Z),D(Z);(2)求ρXY;(3)X,Z是否相互独立?为什么?
设随机向量(X,y)的概率密度f(x,y)满足f(x,y)=f(一x,y),且ρXY存在,则ρXY=()
设f(x)是奇函数,且对一切x有f(x+2)=f(x)+f(2),又f(1)=a,a为常数,n为整数,则f(n)=________.
求不定积分∫(arcsinx)2dx.
随机试题
Alittleinformationisadangerousthing.Alotofinformation,ifit’sinaccurateorconfusingevenmoreso.Thisisaproblem
有机磷杀虫剂中毒最常见的症状是
某水闸为14孔开敞式水闸,设计流量为2400m3/s。每个闸墩划分为一个单元工程,其中第4号闸墩高10.5m,厚1.5m,顺水流方向长24.0m,其混凝土量为365.8m3,模板面积为509.6m2,钢筋量为30.5t。闸墩混凝土采用钢模施工。承包人进行
可以预防沥青混凝土路面横向接缝病害的措施是()
重要性水平是指财务会计报表等信息的漏报或错报程度足以影响使用者根据财务报表所做出的决策。( )
企业出售原材料取得的款项扣除其成本及相关费用后的净额,应当记入“营业外收入”或“营业外支出”科目。()
秦士录宋濂邓弼,字伯翊,秦人也。身长七尺,双目有紫棱,开合闪闪如电,能以力雄人。邻牛方斗,不可擘,拳其脊,折仆地;市门石鼓,十人舁,弗能举,两手持之行。然好使酒,怒视人,人见辄避,曰:“狂生不可近,近则必得奇辱。”
公安机关对人民检察院不批准逮捕的决定,认为有错误的时候,()
公共选择理论将()、交换范式和方法论个人主义应用到政治和公共政策领域。
Shecouldnothavebelievedit,butthatshe______it.
最新回复
(
0
)