首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)在[0,1]连续,在(0,1)可导,f(0)=0,0<f′(χ)<1,χ∈(0,1). 证明:[∫01f(χ)dχ]2>∫01f3(χ)dχ.
设f(χ)在[0,1]连续,在(0,1)可导,f(0)=0,0<f′(χ)<1,χ∈(0,1). 证明:[∫01f(χ)dχ]2>∫01f3(χ)dχ.
admin
2017-11-09
40
问题
设f(χ)在[0,1]连续,在(0,1)可导,f(0)=0,0<f′(χ)<1,χ∈(0,1).
证明:[∫
0
1
f(χ)dχ]
2
>∫
0
1
f
3
(χ)dχ.
选项
答案
令F(χ)=[∫
0
χ
f(t)dt]
2
-∫
0
χ
f
3
(t)dt,易知F(0)=0,且F(z)在[0,1]可导,则 F′(χ)=2f(χ)∫
0
χ
f(t)dt-f
3
(χ)=f(χ)[2∫
0
χ
f(t)dt-f
2
(χ)]. 记g(χ)=2∫
0
χ
f(t)dt-f
2
(χ),则g(χ)在(0,1)可导,即 g′(χ)=2f(χ)-2f(χ)f′(χ)=2f(χ)[1-f′(χ)], 由于0<f′(χ)<1,χ∈(0,1),则f(χ)在[0,1]内递增. 则当0<χ≤1时,f(χ)>f(0)=0, 于是g′(χ)>0,χ∈(0,1),则g(χ)在[0,1]递增, 即当0<χ≤1时,g(χ)>g(0)=0, 所以,当0<χ≤1时,F′(χ)=f(χ)g(χ)>0, 即F(χ)在0≤χ≤1时递增,故当0<χ≤1时,F(χ)>F(0)=0, 特别地,有F(1)>0,即[∫
0
1
f(χ)dχ]
2
-∫
0
1
f
3
(χ)dχ>0, 所以[∫
0
1
f(χ)dχ]
2
>∫
0
1
f
3
(χ)dχ.
解析
转载请注明原文地址:https://kaotiyun.com/show/H6X4777K
0
考研数学三
相关试题推荐
设A是n阶矩阵,α1,α2,…,αn是n维列向量,且αn≠0,若Aα1=α2,Aα2=α3,…,Aαn-1=αn,Aαn=0.(1)证明:α1,α2,…,αn线性无关;(2)求A的特征值与特征向量.
设A=,求a,b及正交矩阵P,使得PTAP=B.
设A是m×s矩阵,B是s×n矩阵,且r(B)=r(AB).证明:方程组BX=0与ABX=0是同解方程组.
设有方程组AX=0与BX=0,其中A,B都是m×n矩阵,下列四个命题:(1)若AX=0的解都是BX=0的解,则r(A)≥r(B)(2)若r(A)≥r(B),则AX=0的解都是BX=0的解(3)若AX=0与BX=0同解,则r(A)=r(B)
设随机变量X~U[一1,1],则随机变量U=arcsinX,V=arccosX的相关系数为().
早晨开始下雪整天不停,中午一扫雪车开始扫雪,每小时扫雪体积为常数,到下午2点扫雪2km,到下午4点又扫雪1km,问降雪是什么时候开始的?
用变量代换x=lnt将方程+e2xy=0化y关于t的方程,并求原方程的通解.
证明:,其中a>0为常数.
甲、乙两人比赛射击,每个射击回合中取胜者得1分,假设每个射击回合中,甲胜的概率为α,乙胜的概率为β(α+β=1),比赛进行到一人比另一人多2分为止,多2分者最终获胜.求甲、乙最终获胜的概率.比赛是否有可能无限地一直进行下去?
微分方程y’+ytanx=cosx的通解为y=________.
随机试题
中国人民银行的两大总行营业部分别在_______、_______。
肝血管瘤胫骨骨软骨瘤
环跳疽的初期体征下列哪项不符:
甲深夜在山林中盗伐树木,巡夜的守林人乙听到砍伐声,为了不惊动盗伐者循声悄悄接近。被砍伐的树木倒下,砸死了乙。甲的行为:
以CIFExship’sHoldNewYork条件成交,卖方应负担从装运港到纽约为止的费用和风险。()
根据国际经验,关于农产品质量安全管理方式的说法,正确的有()。
欧洲国家89%的咖啡成瘾者在尝试咖啡前曾吃过巧克力。因此,该地区吃巧克力的人数如果能减少一半,新的咖啡成瘾者人数将显著减少。以下哪项如果为真,最能削弱上述论证?()
以往认为最适合哲学的领域,如今已被人类存在的各方面经验作出成功解释的科学所占领。在一个信息技术取得支配地位的世界上,哲学似乎已败下阵来,它至少不能把智慧切成一个个可以测量的小块提供给人们。在20世纪,有无数哲学家讥讽自己从事的学科,认为哲学活动在经历了三千
正数的机器数等于其真值的码制有(12)。
Volumeshavebeenwrittenabouttechnology’sabilitytoconnectpeople.Butburyingone’snoseinabookhasalwaysbeensomewha
最新回复
(
0
)