首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)在[0,1]连续,在(0,1)可导,f(0)=0,0<f′(χ)<1,χ∈(0,1). 证明:[∫01f(χ)dχ]2>∫01f3(χ)dχ.
设f(χ)在[0,1]连续,在(0,1)可导,f(0)=0,0<f′(χ)<1,χ∈(0,1). 证明:[∫01f(χ)dχ]2>∫01f3(χ)dχ.
admin
2017-11-09
54
问题
设f(χ)在[0,1]连续,在(0,1)可导,f(0)=0,0<f′(χ)<1,χ∈(0,1).
证明:[∫
0
1
f(χ)dχ]
2
>∫
0
1
f
3
(χ)dχ.
选项
答案
令F(χ)=[∫
0
χ
f(t)dt]
2
-∫
0
χ
f
3
(t)dt,易知F(0)=0,且F(z)在[0,1]可导,则 F′(χ)=2f(χ)∫
0
χ
f(t)dt-f
3
(χ)=f(χ)[2∫
0
χ
f(t)dt-f
2
(χ)]. 记g(χ)=2∫
0
χ
f(t)dt-f
2
(χ),则g(χ)在(0,1)可导,即 g′(χ)=2f(χ)-2f(χ)f′(χ)=2f(χ)[1-f′(χ)], 由于0<f′(χ)<1,χ∈(0,1),则f(χ)在[0,1]内递增. 则当0<χ≤1时,f(χ)>f(0)=0, 于是g′(χ)>0,χ∈(0,1),则g(χ)在[0,1]递增, 即当0<χ≤1时,g(χ)>g(0)=0, 所以,当0<χ≤1时,F′(χ)=f(χ)g(χ)>0, 即F(χ)在0≤χ≤1时递增,故当0<χ≤1时,F(χ)>F(0)=0, 特别地,有F(1)>0,即[∫
0
1
f(χ)dχ]
2
-∫
0
1
f
3
(χ)dχ>0, 所以[∫
0
1
f(χ)dχ]
2
>∫
0
1
f
3
(χ)dχ.
解析
转载请注明原文地址:https://kaotiyun.com/show/H6X4777K
0
考研数学三
相关试题推荐
设函数其中g(x)二阶连续可导,且g(0)=1.(1)确定常数a,使得f(x)在x=0处连续;(2)求f’(x);(3)讨论f’(x)在x=0处的连续性.
设f(x)二阶连续可导且f(0)=f’(0)=0,f"(x)>0.曲线y=f(x)上任一点(x,f(x))(x≠0)处作切线,此切线在x轴上的截距为u,求.
设k>0,则函数f(c)=lnx一+k的零点个数为().
设A是m×n矩阵,且非齐次线性方程组AX=b满足r(A)==r<n.证明:方程组AX=b的线性无关的解向量的个数最多是n一r+1个.
设A,B,C,D都是n阶矩阵,r(CA+DB)=n.(1)证明=n;(2)设ξ1,ξ2,…,ξr与η1,η2,…,ηs分别为方程组AX=0与BX=0的基础解系,证明:ξ1,ξ2,…,ξr,η1,η2,…,ηs线性无关.
,问a,b,c取何值时,(I),(Ⅱ)为同解方程组?
设有20人在某11层楼的底层乘电梯上楼,电梯在途中只下不上,每个乘客在哪一层下等可能,且乘客之间相互独立,求电梯停的次数的数学期望.
微分方程y’一xe-y+=0的通解为________.
微分方程=0的通解是()
随机试题
高效液相色谱法用于含量测定时,对系统性能的要求
刚体作平动时,某瞬时体内各点的速度与加速度为:
()的主要投资对象是资本市场上的上市股票与债券,货币市场上的短期票据与银行同业拆借,以及金融期货、黄金、期权交易、不动产等。
根据现行国家工程建设消防技术标准的要求,下列供暖系统的设置不符合相关规定的是()。
居民乙因拖欠居民甲180万元款项无力偿还,2010年6月经当地有关部门调解,以房产抵偿该笔债务,居民甲因此取得该房产的产权并支付给居民乙差价款20万元。假定当地省政府规定的契税税率为5%。下列表述中正确的是()。(2010年)
阅读下列材料:为了让高中一年级学生能够完整地体验信息处理的全过程,教师通常会设计一个综合性的主题学习活动。“我的悠长假期”主题学习活动即以图像处理为栽体,让学生体验信息采集、加工与表达的全过程。下面是本次主题活动方案:活动目的:以图片处理为载体体验信息
“三弦”这种乐器属于民族乐器中的()类。
元认知指的是对认知的认知,即认知主体关于自己认知过程的知识和调节这些过程的能力,对思维和学习活动的知识和控制。元认知的实质是对认知活动的自我意识和自我调节。根据上述定义,以下包含元认知的是()。
DerVatergibt______TochterdenWagen.
I_______thepicturefromthewallinordertocleanit.
最新回复
(
0
)