首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)为[-a,a]上的连续的偶函数且f(χ)>0,令F(χ)=∫-aa|χ-t|f(t)dt.. (Ⅰ)证明:F′(χ)单调增加. (Ⅱ)当χ取何值时,F(χ)取最小值? (Ⅲ)当F(χ)的最小值为f(a)-a2-1时,求函数f(χ).
设f(χ)为[-a,a]上的连续的偶函数且f(χ)>0,令F(χ)=∫-aa|χ-t|f(t)dt.. (Ⅰ)证明:F′(χ)单调增加. (Ⅱ)当χ取何值时,F(χ)取最小值? (Ⅲ)当F(χ)的最小值为f(a)-a2-1时,求函数f(χ).
admin
2014-12-09
103
问题
设f(χ)为[-a,a]上的连续的偶函数且f(χ)>0,令F(χ)=∫
-a
a
|χ-t|f(t)dt..
(Ⅰ)证明:F′(χ)单调增加.
(Ⅱ)当χ取何值时,F(χ)取最小值?
(Ⅲ)当F(χ)的最小值为f(a)-a
2
-1时,求函数f(χ).
选项
答案
(Ⅰ)[*] 因为F〞(χ)=2f(χ)>0,所以F′(χ)为单调增加的函数. (Ⅱ)因为F′(0)=∫
-a
0
f(χ)dχ-∫
0
a
f(χ)dχ且f(χ)为偶函数,所以F′(0)=0,又因为F〞(0)>0,所以χ=0为F(χ)的唯一极小点,也为最小点. 故最小值为F(0)=∫
-a
a
|t|f(t)dt=2∫
0
a
t
解析
转载请注明原文地址:https://kaotiyun.com/show/H8bD777K
0
考研数学二
相关试题推荐
下列有关文学常识的表述,正确的是()。
两工厂各加工480件产品,甲工厂每天比乙工厂多加工4件,完成任务所需时间比乙工厂少10天,设甲工厂每天加工产品x件,则x满足的方程为()。
两工厂各加工480件产品,甲工厂每天比乙工厂多加工4件,完成任务所需时间比乙工厂少10天,设甲工厂每天加工产品x件,则x满足的方程为()。
应当先履行合同债务的当事人,得行使不安抗辩权的情形是:有确切证据证明对方()。
黑洞是爱因斯坦广义相对论最不祥的预言:过多物质或能量集中在一处,终将导致空间坍塌,像魔术师的外套一样吞进万物,万事万物皆逃不脱。直到40年前霍金博士宣称颠覆了黑洞一一或者可能是彻底推翻了。他的方程式表明:黑洞不会永存。一段时间之后,它们会“泄掉”,然后爆炸
毛泽东说:“我们说马克思主义是对的,决不是因为马克思这个人是什么‘先哲’,而是因为他的理论,在我们的实践中,在我们的斗争中,证明了是对的。”这说明马克思主义具有()
设f(χ)为[-a,a]上的连续的偶函数且f(χ)>0,令F(χ)=∫-aa|χ-t|f(t)dt..(Ⅰ)证明:F′(χ)单调增加.(Ⅱ)当χ取何值时,F(χ)取最小值?(Ⅲ)当F(χ)的最小值为f(a)-a2-1时,求函数f(χ).
设函数f(χ)(χ≥0)连续可导,且f(0)=1.又已知曲线y=f(χ)、χ轴、y轴及过点(χ,0)且垂直于χ轴的直线所围成的图形的面积与曲线y=f(χ)在[0,χ]上的一段弧长相等,求f(χ).
设函数f(x)在[—1,1]上连续,在点x=0处可导,且f’(0)≠0.(Ⅰ)求证:给定的x∈(0,1),至少存在一个θ∈(0,1)使得∫0xf(t)dt+∫0—xf(t)dt=x[f(θx)—f(—θx)];(Ⅱ)求极限.
设F(x,y)在点(x0,y0)某邻域有连续的偏导数,F(x0,y0)=0,则F’y(x0,y0)≠0是F(x,y)=0在点(x0,y0)某邻域能确定一个连续函数y=y(x),它满足y0=y(x0),并有连续的导数的_________条件.
随机试题
根据《招标投标法》的规定,下列行为如果影响到中标结果,将导致中标无效的有()。
可以反映企业的短期偿债能力和长期偿债能力的报表是()。
任用会计人员不符合《会计法》规定的行为。只是指单位任用无会计从业资格证书的人员从事会计工作的行为。()
属于预算外资金投资性支出的有()。
某企业为增值税一般纳税人,适用的增值税税率为16%。原材料按实际成本法进行核算,发出商品采用先进先出法计价。该企业仅生产X产品,采用品种法进行成本核算。原材料随生产过程陆续投入使用,制造费用单独核算。月末生产费用在完工产品和在产品之间按约当产量比例法进行分
下列图形中,是中心对称图形但不是轴对称图形的是().
一个合唱团有50人,周末有一个紧急演出,教师要尽快地通知到每一个队员.如果用打电话的方式,每分钟通知一个人,最少需要()分钟.
小姚负责新员工的入职培训,在培训演示文稿中需要制作公司的组织结构图,在PowerPoint中最优的操作方法是()
Lookatthetenstatementsforthispart.Youwillhearamantalkingabout"TheWrightBrothers".Decidewhetheryout
Nowadays,airtravelisvery【21】.WearenotsurprisedwhenwewatchonTVthatapoliticianhastalkedwithFrenchPresidentin
最新回复
(
0
)