设f(χ)为[-a,a]上的连续的偶函数且f(χ)>0,令F(χ)=∫-aa|χ-t|f(t)dt.. (Ⅰ)证明:F′(χ)单调增加. (Ⅱ)当χ取何值时,F(χ)取最小值? (Ⅲ)当F(χ)的最小值为f(a)-a2-1时,求函数f(χ).

admin2014-12-09  71

问题 设f(χ)为[-a,a]上的连续的偶函数且f(χ)>0,令F(χ)=∫-aa|χ-t|f(t)dt..
(Ⅰ)证明:F′(χ)单调增加.
(Ⅱ)当χ取何值时,F(χ)取最小值?
(Ⅲ)当F(χ)的最小值为f(a)-a2-1时,求函数f(χ).

选项

答案(Ⅰ)[*] 因为F〞(χ)=2f(χ)>0,所以F′(χ)为单调增加的函数. (Ⅱ)因为F′(0)=∫-a0f(χ)dχ-∫0af(χ)dχ且f(χ)为偶函数,所以F′(0)=0,又因为F〞(0)>0,所以χ=0为F(χ)的唯一极小点,也为最小点. 故最小值为F(0)=∫-aa|t|f(t)dt=2∫0at

解析
转载请注明原文地址:https://kaotiyun.com/show/H8bD777K
0

最新回复(0)