首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明导函数的中间值定理(达布定理):设函数f(x)在区间[a,b]上可导(注意:不要求导函数f’(x)在区间[a,b]上连续!),则对于任何满足min{f’(A),f’(B)}≤μ≤max{f’(A),f’(B)}的常数μ,存在ξ∈[a,b]使得f’(ξ)
证明导函数的中间值定理(达布定理):设函数f(x)在区间[a,b]上可导(注意:不要求导函数f’(x)在区间[a,b]上连续!),则对于任何满足min{f’(A),f’(B)}≤μ≤max{f’(A),f’(B)}的常数μ,存在ξ∈[a,b]使得f’(ξ)
admin
2016-07-29
47
问题
证明导函数的中间值定理(达布定理):设函数f(x)在区间[a,b]上可导(注意:不要求导函数f’(x)在区间[a,b]上连续!),则对于任何满足min{f’(A),f’(B)}≤μ≤max{f’(A),f’(B)}的常数μ,存在ξ∈[a,b]使得f’(ξ)=μ.
选项
答案
若f’(A)=f’(B),则取ξ=a或ξ=b即可.若f’(A)≠f’(B),为了确定起见,无妨设f’(A)>f’(B)(对f’(A)<f’(B)的情形可类似证明).当μ=f’(A)或μ=f’(B)时相应取ξ=a或ξ=b即可.从而只需证明μ介于f’(A)与f’(B)之间的情形定理的结论也成立.引入辅助函数F(x)=f(x)一μ(x一a),则F’(A)=f’(A)一μ>0,由导数的定义即得[*]从而存在x
1
∈(a,b)使得[*]于是F(x
1
)>F(A),这表明F(A)不是F(x)在[a,b]上的最大值.此外还有F’(B)=f’(B)一μ<0,同样由导数定义得[*]从而存在x
2
∈(x
1
,b)使得[*]于是F(x
2
)>F(B),这表明F(6)也不是F(x)在[a,b]上的最大值.综上所述即知必存在ξ∈(a,b)使得F(ξ)是F(x)在[a,b]上的最大值,由F(x)的可导性必有F’(ξ)=0即f’(ξ)=μ.类似可证,在相反的情形下必存在ξ∈(a,b)使得F(ξ)是F(x)在[a,b]上的最小值,由F(x)的可导性也有F’(ξ)=0即f’(ξ)=μ成立.
解析
转载请注明原文地址:https://kaotiyun.com/show/HWT4777K
0
考研数学三
相关试题推荐
武汉市肺炎疫情防控指挥部发布通知,明确武汉市住宅小区封闭管理主要措施,要求住宅小区一律实行封闭管理,小区居民出入一律严格管控。老旧小区、开放式居住区通过打围方式实现硬隔离。出入口安排人员24小时值班值守,测温登记,审核放行。这一做法()
考虑一家商场某日5位顾客购买洗衣机的类型(直筒或滚筒).设P(5位顾客全部购买滚筒洗衣机)=0.0768,P(5位顾客全部购买直筒洗衣机)=0.0102,那么两类洗衣机都至少卖出一台的概率是多大?
已知向量组α1=(t,2,1),α2=(2,t,0),α3=(1,-1,1),试讨论:(1)t为何值时,向量组α1,α2,α3线性相关?(2)t为何值时,向量组α1,α2,α3线性无关?
α1,α2是向量组(Ⅱ)的一个极大无关组,(Ⅱ)的秩为2,故(Ⅰ)的秩为2.由于(Ⅰ)线性相关,从而行列式|β1,β2,β3|=0,由此解得a=3b;又β3可由向量组(Ⅱ)线性表示,从而β3可由α1,α2线性表示,所以向量组α1,α2,β3线性相关,于是行
设P(A)=0或1,证明A与其他任何事件B相互独立.
根据定义证明:
设函数f(x)在闭区间[-1,1]上具有三阶连续导数,且f(-1)=0,f(1)-1,f’(0)=0,证明:在开区间(-1,1)内至少存在一点ξ,使f"’(ξ)=3.
设A为3阶矩阵,|A|=3,A*为A的伴随矩阵.若交换A的第1行与第2行得矩阵B,则|BA*|=__________.
设随机变量X取非负整数值的概率为P{X=n}=an,则EX=___________.
求的间断点并分类.
随机试题
发病一个半小时后的脑出血发病2周后的脑出血
一患儿发热3天后出皮疹,皮疹位于颈部、面部、躯干、四肢、手心、足心,体温不退。该病常见并发症不包括
依照我国刑事诉讼法的规定,公安机关对于已经超过追诉时效期限的案件:()
到2010年,我国城市节水的目标是南方沿海缺水城市达到()。
铁路工程招标中,下列属于标段划分原则的有()。
针对某种具体的物价与工资形势,由政府出面施加压力来扭转局势的收入政策是( )。
()是指以期限在一年以下的金融资产为交易标的物的短期金融市场。
对于大众来说,科学无处不在,它完全可以成为社会流行文化的一部分,享受科学文化知识就像看书、读报、听音乐、看电影一样。近日,由中国科协主办的“典赞·2016科普中国”活动揭晓了2016年度十大“科学”流言终结榜,同时揭晓的还有年度十大科学传播事件
下列不属于“三通”的是()。
某中学发现有学生课余用扑克玩带有赌博性质的游戏,因此规定学生不得带扑克进入学校,不过即使是硬币,也可以用作赌具,但禁止学生带硬币进入学校是不可思议的,因此,禁止学生带扑克进学校是荒谬的。以下哪项如果为真,最能削弱上述论证?
最新回复
(
0
)