首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明:方阵A是正交矩阵的充分必要条件是|A|=±1,且若|A|=1,则它的每一个元素等于自己的代数余子式,若|A|=一1,则它的每个元素等于自己的代数余子式乘一1.
证明:方阵A是正交矩阵的充分必要条件是|A|=±1,且若|A|=1,则它的每一个元素等于自己的代数余子式,若|A|=一1,则它的每个元素等于自己的代数余子式乘一1.
admin
2015-08-14
64
问题
证明:方阵A是正交矩阵的充分必要条件是|A|=±1,且若|A|=1,则它的每一个元素等于自己的代数余子式,若|A|=一1,则它的每个元素等于自己的代数余子式乘一1.
选项
答案
必要性 A是正交矩阵AA
T
=E |A|=±1. 若|A|=1,则AA*=|A|E=E,而已知AA
T
=E,从而有A
T
=A*,即a
ij
=A
ij
; 若|A|=-1,则AA*=|A|E=-E,A(一A*)=E,而已知AA
T
=E,从而有一A*=A
T
,即a
ij
=一A
ij
. 充分性 |A|=1且a
ij
=A
ij
,则A*=A
T
,AA*=AA
T
=|A|E=E,A是正交阵,|A|=一1,且a
ij
=一A
ij
时,一A*=A
T
,AA*=|A|E=一E,即AA
T
=E,A是正交阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/Hc34777K
0
考研数学二
相关试题推荐
设α1,α2,…,αn为n个n维线性无关的向量,A是n阶矩阵.证明:Aα1,Aα2,…,Aαn线性无关的充分必要条件是可逆.
设A为m×n阶矩阵,则方程组AX=b有唯一解的充分必要条件是().
曲线的斜渐近线为________。
若矩阵A=相似于对角矩阵,试确定常数a的值,并求可逆矩阵P使P-1AP=.
计算二重积分其中D={(x,y)|y≥0,1≤x2+y2≤2x}.
以y=C1+e-3x(C2cos2x+C3sin2x)为通解的常系数齐次线性微分方程可以为()
设有密度为u=1的均匀正方体V:0≤x≤a,0≤y≤a,0≤z≤a,设直线L过坐标原点且方向向量s的方向余弦为cosα,cosβ,cosγ,求V对L的转动惯量,并求当{cosα,cosβ,cosγ}满足什么条件时,此转动惯量有最大、最小值.
设f(x)为二阶可导的奇函数,且x<0时有f"(x)>0,f’(x)<0,则当x>0时有().
下列命题正确的是().
随机试题
护理水、电解质和酸碱失衡病人的预期目标是()
管理的二重性是指
下列梗死灶常发生化脓的是
既能祛风湿,又能退虚热的药是
呋喃唑酮主要用于()。
通常情况下,导致商业银行破产倒闭的直接原因是()。
社会服务机构财务管理的功能主要包括()。
不安抗辩权,是指当事人瓦负债务,有先后履行顺序的,先履行的一方有确切证据表明另一方丧失履行债务能力时,在对方没有履行或者没有提供担保之前,有权中止合同履行的权利。规定不安抗辩权是为了切实保护当事人的合法权益,防止借合同进行欺诈,促使对方履行义务。以下行使了
A、 B、 C、 D、 D
设函数f(u)在(0,+∞)内具有二阶导数,且z==0.(1)验证f"(u)+=0;(2)若f(1)=0,f’(1)=1,求函数f(u)的表达式.
最新回复
(
0
)