首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
n元非齐次线性方程组AX=β如果有解,则解集合的秩为=n—r(A)+1.
n元非齐次线性方程组AX=β如果有解,则解集合的秩为=n—r(A)+1.
admin
2017-10-21
67
问题
n元非齐次线性方程组AX=β如果有解,则解集合的秩为=n—r(A)+1.
选项
答案
记s=n—r(A),则本题要说明两点.(1)存在AX=β的s+1个线性无关的解.(2)AX=β的s+2个解一定线性相关. (1)设ξ为(I)的一个解,η
1
,η
2
,…,η
S
为导出组的基础解系,则ξ不能用η
1
,η
2
,…,η
S
线性表示, 因此ξ,η
1
,η
2
,…,η
S
线性无关.ξ,ξ+η
1
,ξ+η
2
,…,ξ+η
S
是(I)的s+1个解,并且它们等价于ξ,η
1
,η
2
,…,η
S
.于是 r(ξ,ξ+η
1
,ξ+η
2
,…,ξ+η
s
)=r(ξ,η
1
,η
2
,…,η
S
)=s+1,因此ξ,ξ+η
1
,ξ+η
2
,…,ξ+η
s
是(I)的s+1个线性无关的解. (2)AX=β的任何s+2个解都可用ξ,η
1
,η
2
,…,η
s
这s+1向量线性表示,因此一定线性相关.
解析
转载请注明原文地址:https://kaotiyun.com/show/HdH4777K
0
考研数学三
相关试题推荐
设α1,α2,…,αn为n个线性无关的n维向量,且与向量β正交.证明:向量β为零向量.
设向量组α1,α2,α3线性无关,且α1+aα2+4α3,2α1+α2—α3,α2+α3线性相关,则a=
二次型f(x1,x2,x3)=x12+ax22+x32—4x1x2—8x1x3—4x2x3经过正交变换化为标准形5y12+by22一4y32,求:(1)常数a,b;(2)正交变换的矩阵Q.
设三阶实对称矩阵A的特征值为λ1=8,λ2=λ3=2,矩阵A的属于特征值λ1=8的特征向量为,求属于λ2=λ3=2的另一个特征向量.
设un>0(n=1,2,…),Sn=u1+u2+…+un.证明:收敛.
设A=,且AX=0的基础解系含有两个线性无关的解向量,求AX=0的通解.
设α1,α2为齐次线性方程组AX=0的基础解系,β1,β2为非齐次线性方程组AX=b的两个不同解,则方程组AX=b的通解为().
设α1,α2,α3是四元非齐次线性方程组AX=b的三个解向量,r(A)=3,且α1+α2=,则方程组AX=b的通解为__________.
设A是三阶矩阵,α1,α2,α3为三个三维线性无关的列向量,且满足Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2.(1)求矩阵A的特征值;(2)判断矩阵A可否对角化.
设二次型f(x1,x2,x3)=2(a1x1,a2x2,a3x3)2+(b1x1,b2x2,b3x3)2,记证明二次型f对应的矩阵为2ααT+ββT。
随机试题
关于肺结核处于稳定期的描述下列哪项是不正确的
患者喘逆剐甚,张口抬肩,鼻翼煽张,呼吸困难,不能平卧,心悸,烦躁不安,面唇青紫,汗出肢冷,脉浮大无根。治宜
男,48岁,反酸、烧心5个月。胃镜检查:反流性食管炎伴溃疡形成。最佳的治疗药物是
乳腺癌好发于
主要用于预防Ⅰ型变态反应所致哮喘的药物是( )。
已知沿海某建设项目废气中SO2的等标排放量是3.0×109,则该项目大气的评价等级为()。
在影响消费者行为的因素中,属于个人因素的有()。
保证幼儿每天睡(),其中午睡一般应达到2小时左右。午睡时间可根据幼儿年龄、季节的变化和个体差异适当减少。
眼过千遍不如手过一遍,是贯彻()原则的体现。
市场失灵的主要表现有()。
最新回复
(
0
)