首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求函数f(x,y)=x2+2y2在约束条件x2+y2=1下的最大值和最小值.
求函数f(x,y)=x2+2y2在约束条件x2+y2=1下的最大值和最小值.
admin
2021-02-25
64
问题
求函数f(x,y)=x
2
+2y
2
在约束条件x
2
+y
2
=1下的最大值和最小值.
选项
答案
解法1:转化为无条件极值. 由约束条件可得x
2
=1-y
2
,-1≤y≤1,代入目标函数f(x,y)=x
2
+2y
2
中,得 φ(y)=(1-y
2
)+2y
2
=1+y
2
,-1≤y≤1. 由φ’(Y)=2y=0得唯一驻点y=0,又φ(0)=1,φ(±1)=2,可知φ(y)的最大值为2,最小值为0.故函数f(x,y)=x
2
+2y
2
在约束条件x
2
+y
2
=1下的最大值和最小值分别为2,0. 解法2:利用拉格朗日乘数法. 设L(x,y,λ)=x
2
+2y
2
+λ(x
2
+y
2
-1),由 [*] 解得可能极值点为(0,±1),(±1,0). 又f(0,±1)=2,f(±1,0)=1,故f
max
=2,f
min
=1.
解析
考查多元函数条件极值的求法,转化为无条件极值计算或利用拉格朗日乘数法求解.
转载请注明原文地址:https://kaotiyun.com/show/He84777K
0
考研数学二
相关试题推荐
设其中函数f,g具有二阶连续偏导数,求
设向量组α1=(a,0,10)T,α2=(一2,1,5)T,α3=(一1,1,4)T,β=(1,b,c)T,试问:当a,b,c满足什么条件时,回答下列问题:β不可由α1,α2,α3线性表出;
设有方程y”+(4x+e2y)(y’)3=0.(1)将方程转化为x为因变量,y作为自变量的方程;(2)求上述方程的通解.
设y=f(x)为区间[0,1]上的非负连续函数.设f(x)在(0,1)内可导,且f’(x)>-,证明(1)中的c是唯一的.
在xOy坐标平面上,连续曲线L过点M(1,0),其上任意点P(x,y)(x≠0)处的切线斜率与直线OP的斜率之差等于ax(常数a>0)。求L的方程;
设f(x)∈C[a,b],在(a,b)内二阶可导,且f’’(x)≥0,φ(x)是区间[a,b]上的非负连续函数,且∫ab(x)dx=1.证明:∫abf(x)φ(c)dx≥f[∫abxφ(x)dx].
设函数f(x,y,z)一阶连续可偏导且满足f(tx,ty,tz)=tkf(x,y,z).证明:
,求A的全部特征值,并证明A可以对角化.
设f,g为连续可微函数,u=f(χ,χy),v=g(χ+χy),则=_______.
(2008年)设n元线性方程组Aχ=b,其中(Ⅰ)证明行列式|A|=(n+1)an;(Ⅱ)当a为何值时,该方程组有唯一的解,并在此时求χ1;(Ⅲ)当a为何值时,该方程组有无穷多解,并在此时求其通解.
随机试题
洪女士,35岁。因慢性肾盂肾炎入院,第2天需做尿常规检查。王护士给了病人1个干燥的空瓶子,嘱其“第2日早晨起床留小便,约200ml”。王护士工作中的疏忽是( )。
关于采用电抗器降压起动,以下叙述不正确的是()。
下列关于商业银行理财客户中高净值个人客户条件的表述中,错误的是()。
下列理解,不符合文意的一项是()。下列推断有误的一项是()。
八索九丘
下面关于嵌入式系统中常用的触摸屏的叙述中,错误的是()。
打开考生文件夹下的演示文稿yswg.pptx,按照下列要求完成对此文稿的修饰并保存。在演示文稿的开始处插入一张“仅标题”幻灯片,作为文稿的第一张幻灯片,标题键入“吃亏就是占便宜”,并设置为72磅;在第二张幻灯片的主标题中键入“我想做一个美丽女人",并
Afterthebirthofmysecondchild,Igotajobatarestaurant.Havingworkedwithanexperienced【C1】______forafewdays,Iwa
Writeabankletteraccordingtothefollowingrequirements.WriteyouranswerontheANSWERSHEET.提示:2008年8月20日,ABC银行城市分行的助理行长
Historically,althoughthechildrenofimmigrantsmayhavegrownupbilingualandbicultural,manydidnotpassonmuchoftheir
最新回复
(
0
)