首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求函数f(x,y)=x2+2y2在约束条件x2+y2=1下的最大值和最小值.
求函数f(x,y)=x2+2y2在约束条件x2+y2=1下的最大值和最小值.
admin
2021-02-25
45
问题
求函数f(x,y)=x
2
+2y
2
在约束条件x
2
+y
2
=1下的最大值和最小值.
选项
答案
解法1:转化为无条件极值. 由约束条件可得x
2
=1-y
2
,-1≤y≤1,代入目标函数f(x,y)=x
2
+2y
2
中,得 φ(y)=(1-y
2
)+2y
2
=1+y
2
,-1≤y≤1. 由φ’(Y)=2y=0得唯一驻点y=0,又φ(0)=1,φ(±1)=2,可知φ(y)的最大值为2,最小值为0.故函数f(x,y)=x
2
+2y
2
在约束条件x
2
+y
2
=1下的最大值和最小值分别为2,0. 解法2:利用拉格朗日乘数法. 设L(x,y,λ)=x
2
+2y
2
+λ(x
2
+y
2
-1),由 [*] 解得可能极值点为(0,±1),(±1,0). 又f(0,±1)=2,f(±1,0)=1,故f
max
=2,f
min
=1.
解析
考查多元函数条件极值的求法,转化为无条件极值计算或利用拉格朗日乘数法求解.
转载请注明原文地址:https://kaotiyun.com/show/He84777K
0
考研数学二
相关试题推荐
设函数f(x)在[0,+∞)上可导,f(0)=1,且满足等式f’(x)+f(x)一∫0xf(t)dt=0。求导数f’(x);
(1)证明方程xn+xn-1+…+x=1(n为大于1的整数)在区间(,1)内有且仅有一个实根;(2)记上题中的实根为xn,证明xn存在,并求此极限。[img][/img]
设A,b都是n阶矩阵,使得A+B可逆,证明B(A+B)-1A=A(A+B)-1B.
证明:方阵A是正交矩阵的充分必要条件是|A|=±1,且若|A|=1,则它的每一个元素等于自己的代数余子式,若|A|=一1.则它的每个元素等于自己的代数余子式乘一1.
设f(x)∈C[a,b],在(a,b)内二阶可导,且f’’(x)≥0,φ(x)是区间[a,b]上的非负连续函数,且∫ab(x)dx=1.证明:∫abf(x)φ(c)dx≥f[∫abxφ(x)dx].
已知A,B为三阶矩阵,且秩(B)=2,秩(AB)=1.试求AX=0的通解.
设函数f(u)可微,且f’(2)=2,则z=f(x2+y2)在点(1,1)处的全微分dz|(1,1)=_________.
设函数f(χ)可导,且f(0)=0,F(χ)=∫0χtn-1(χn-tn)dt,试求=_______.
考虑二元函数f(x,y)的四条性质:①f(x,y)在点(x0,y0)处连续,②f(x,y)在点(x0,y0)处的两个偏导数连续,③f(x,y)在点(x0,y0)处可微,④f(x,y)在点(x0,y0)处的两个偏导数存在.则有()
随机试题
肝细胞中可以发生的变性有
受精卵受到照射的效应表现为显性致死性效应的时间是
前列腺复位固定术的优点
某一中等城市,经对周边县改区后扩大为大城市,根据地价管理的要求需作基准地价更新评估。现委托一土地评估机构进行评估。基准地价评估期日为2004年1月1日。该机构在评估过程中调查了下述资料:(1)调查的样点中,有一个样点P为临街商业店铺,位于二级地,租金为2
对拟建安装工程数量的计算与确定,指的是()。
李老师在教学中总是善于引导学生探索新知,而不是单纯地传递知识信息。这体现的教学原则是()。
从违法行为的构成要素看,判断某一行为是否违法的关键因素是什么?()
新能源指刚开始开发利用或正在积极研究、有待推广的能源,如太阳能、地热能、风能、海洋能、生物质能和核聚变能等。下列选项中属于二次能源的是()。
公车发生事故。你作为公职人员。如何组织逃生?
ThereoncewasamasterwhocametoIndia,perhapsfromPersia.Whenhegotthere,hesawalotof【C1】______.InIndiatheyhave
最新回复
(
0
)