首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,ξ1,ξ2,…,ξt是齐次方程组Ax=0的基础解系,若存在ηi(i=1,2,…,t),使Aηi=ξi,证明:向量组ξ1,ξ2,…,ξt,η1,η2,…,ηt线性无关.
设A是n阶矩阵,ξ1,ξ2,…,ξt是齐次方程组Ax=0的基础解系,若存在ηi(i=1,2,…,t),使Aηi=ξi,证明:向量组ξ1,ξ2,…,ξt,η1,η2,…,ηt线性无关.
admin
2017-07-26
37
问题
设A是n阶矩阵,ξ
1
,ξ
2
,…,ξ
t
是齐次方程组Ax=0的基础解系,若存在η
i
(i=1,2,…,t),使Aη
i
=ξ
i
,证明:向量组ξ
1
,ξ
2
,…,ξ
t
,η
1
,η
2
,…,η
t
线性无关.
选项
答案
如果 k
1
ξ
1
+k
2
ξ
2
+…+k
t
ξ
t
+l
1
η
1
+l
2
η
2
+…+l
t
η
t
=0 ① 用A左乘上式,并把Aξ
i
=0,Aη
i
=ξ
i
,i=1,2,…,t代入,得 l
1
ξ
1
+l
2
ξ
2
+…+l
t
ξ
t
=0. ② 因为ξ
1
,ξ
2
,…,ξ
t
是Ax=0的基础解系,它们线性无关,故对②必有 l
1
=0,l
2
=0,…,l
t
=0. 代入①式,有k
1
ξ
1
+k
2
ξ
2
+…+k
t
ξ
t
=0. 所以必有 k
1
=0,k
2
=0,…,k
t
=0. 即向量组ξ
1
,ξ
2
,…,ξ
t
,η
1
,η
2
,…,η
t
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/HyH4777K
0
考研数学三
相关试题推荐
已知4元齐次线性方程组的解全是4元方程(ii)x1+x2+x3=0的解,求齐次方程组(i)的解;
下列矩阵中两两相似的是
已知A是3阶矩阵,α1,α2,α3是线性无关的3维列向量,满足Aα1=一α1一3α2—3α3,Aα2=4α1+4α2+α3,Aα3一2α1+3α3.求矩阵A的特征向量;
设函数f(x)在[0,1]上具有二阶连续导数,且f(0)=f(1)=0,f(x)≠0(x∈(0,1)),证明:
证明下列命题:设f(x)在[0,1]连续,在(0,1)二阶可导且f(0)=f(1)=0,f’’(x)0(x∈(0,1)).
已知义矩阵A和B相似,A*是A的伴随矩阵,则|A*+3E|=___________.
向量组α1,α2,…,αm线性无关的充分必要条件是().
随机试题
中国魏晋时期的______哲学流派对这个时期的诗歌、书法作品创作中深层的意蕴具有重要影响。()
A.含挥发油,油中主成分为桂皮酸B.含挥发油,油中主成分是α、β-桉油醇C.七叶树素、七叶树苷D.东莨菪碱、莨菪碱E.黄酮类化合物、绿原酸、异绿原酸
A.对工作极端负责,对技术精益求精B.树立正确的经营道德观C.为病患者提供质量保证的药品和安全、有效、经济、合理的药学服务D.互相关心,维护集体荣誉E.开展用药调查及药品利用评价药品流通领域的道德责任之一是()
案情:2009年1月,甲、乙、丙、丁、戊共同投资设立鑫荣新材料有限公司(以下简称鑫荣公司),从事保温隔热高新建材的研发与生产。该公司注册资本2000万元,各股东认缴的出资比例分别为44%、32%、13%、6%、5%。其中,丙将其对大都房地产开发有限公司所持
美国对失职或在执业中出现问题的房地产经纪人采取的主要措施有()。
当量子能量达到()eV以上时,对物体有电离作用,能导致机体的严重损伤,这类辐射称为电离辐射。
下列选项中,不属于全国人大常委会的预算管理职权的是()。
2019年2月,农业农村部等七部门联合印发《国家质量兴农战略规划(2018—2022年)》。下列关于实施质量兴农战略的说法,正确的是:
“杵臼之交”多用来指不计身份而结交的朋友。这里的“杵臼”在古代是用来做什么的?()
PeoplewhogrewupinAmericaandWesternEuropehavebecomeusedtotheideathattheWestdominatestheworldeconomy.Infact
最新回复
(
0
)