首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,ξ1,ξ2,…,ξt是齐次方程组Ax=0的基础解系,若存在ηi(i=1,2,…,t),使Aηi=ξi,证明:向量组ξ1,ξ2,…,ξt,η1,η2,…,ηt线性无关.
设A是n阶矩阵,ξ1,ξ2,…,ξt是齐次方程组Ax=0的基础解系,若存在ηi(i=1,2,…,t),使Aηi=ξi,证明:向量组ξ1,ξ2,…,ξt,η1,η2,…,ηt线性无关.
admin
2017-07-26
71
问题
设A是n阶矩阵,ξ
1
,ξ
2
,…,ξ
t
是齐次方程组Ax=0的基础解系,若存在η
i
(i=1,2,…,t),使Aη
i
=ξ
i
,证明:向量组ξ
1
,ξ
2
,…,ξ
t
,η
1
,η
2
,…,η
t
线性无关.
选项
答案
如果 k
1
ξ
1
+k
2
ξ
2
+…+k
t
ξ
t
+l
1
η
1
+l
2
η
2
+…+l
t
η
t
=0 ① 用A左乘上式,并把Aξ
i
=0,Aη
i
=ξ
i
,i=1,2,…,t代入,得 l
1
ξ
1
+l
2
ξ
2
+…+l
t
ξ
t
=0. ② 因为ξ
1
,ξ
2
,…,ξ
t
是Ax=0的基础解系,它们线性无关,故对②必有 l
1
=0,l
2
=0,…,l
t
=0. 代入①式,有k
1
ξ
1
+k
2
ξ
2
+…+k
t
ξ
t
=0. 所以必有 k
1
=0,k
2
=0,…,k
t
=0. 即向量组ξ
1
,ξ
2
,…,ξ
t
,η
1
,η
2
,…,η
t
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/HyH4777K
0
考研数学三
相关试题推荐
已知4元齐次线性方程组的解全是4元方程(ii)x1+x2+x3=0的解,求齐次方程组(i)的解;
下列矩阵中两两相似的是
设函数f(x)在[0,1]上具有二阶连续导数,且f(0)=f(1)=0,f(x)≠0(x∈(0,1)),证明:
已知义矩阵A和B相似,A*是A的伴随矩阵,则|A*+3E|=___________.
已知α1=(1,4,0,2)T,α2=(2,7,1,3)Tα3=(0,1,-1,0)T,β=(3,10,6,4)T,问:(I)a,b取何值时,β不能由α1,α2,α3线性表示?(Ⅱ)a,b取何值时,卢可由α1,α2,α3线性表示?并写出此表示式.
设A是n阶实对称矩阵,P是n阶可逆矩阵,已知n维列向量a是A的属于特征值A的特征向量,则矩阵(P-1AP)T属于特征值λ的特征向量是().
随机试题
①建议从事童书出版的机构聘请心理学、教育学、出版学等相关领域专家共同把关。为儿童读物筑牢安全防线②童书出版有必要设立严格门槛③童书出版需要认定资质、配备专业编辑,目前在这方面尚有欠缺④我国现有专业少儿出版社30多家,随着市场需求增长,少儿出版的队伍不
尤内斯库的戏剧曲折地反映了第二次世界大战后西方世界的()
关于肾柱的描述,正确的是()
检察院办理死刑上诉、抗诉案件,应在开庭前全面审查案卷材料,并进行相关工作。依照有关规定,下列哪些工作是应当进行的?()
沉井施工铺垫木时,以n表示垫木根数,以Q表示第一节沉井重量,L和b表示垫木的长和宽,[σ]表示基底土容许承压力,则垫木根数计算公式为()。
公司已发行的优先股不得超过公司普通股股份总数的50%,且筹资金额不得超过发行前净资产的(),已回购、转换的优先股不纳入计算。
已知一螺绕环的自感系数为L,若将该螺绕环锯成两个半环式的螺线管,则两个半环螺线管的自感系数()。
已知A=可对角化,求可逆矩阵P及对角矩阵A,使P-1AP=A.
SubfieldsofLinguisticsTheoverlappinginterestsbetweenthefieldoflinguisticsandotherdisciplinescreateseveralcro
Maslow’sHierarchyofNeedsAbrahamMaslowhasdevelopedafamoustheoryofhumanneeds,whichcanbearrangedinorderof【T
最新回复
(
0
)