首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x2,x3)=xTAx在正交变换x=Qy下的标准形为y12+y22,且Q的第三列为 (Ⅰ)求A; (Ⅱ)证明A+E为正定矩阵,其中E为三阶单位矩阵。
设二次型f(x1,x2,x3)=xTAx在正交变换x=Qy下的标准形为y12+y22,且Q的第三列为 (Ⅰ)求A; (Ⅱ)证明A+E为正定矩阵,其中E为三阶单位矩阵。
admin
2017-01-21
81
问题
设二次型f(x
1
,x
2
,x
3
)=x
T
Ax在正交变换x=Qy下的标准形为y
1
2
+y
2
2
,且Q的第三列为
(Ⅰ)求A;
(Ⅱ)证明A+E为正定矩阵,其中E为三阶单位矩阵。
选项
答案
(Ⅰ)由题意知Q
T
AQ=Λ,其中Λ=[*] 则A=QΛQ
T
,设Q的其他任一列向量为 (x
1
,x
2
,x
3
)
T
。因为Q为正交矩阵,所以 (x
1
,x
2
,x
3
)[*] 即x
1
+x
3
=0,其基础解系含两个线性无关的解向量,即为α
1
=(—1,0,1)
T
,α
2
=(0,1,0)
T
。把α
1
单位化得β
1
=[*](—1,0,1)
T
,所以 [*] (Ⅱ)证明:因为(A+E)
T
=A
T
+E=A+E,所以A+E为实对称矩阵。 又因为A的特征值为1,1,0,所以A+E特征值为2,2,1,都大于0,因此A+E为正定矩阵。
解析
转载请注明原文地址:https://kaotiyun.com/show/I2H4777K
0
考研数学三
相关试题推荐
互不相容事件与对立事件的区别何在?说出下列各对事件之间的关系:x>20与x≤20;
设函数u(x,y)=φ(x+y)+φ(x-y)+.其中函数妒具有二阶导数,φ具有一阶导数,则必有
已知二次型f(x1,x2,x3)=x12+5x22+x32+2x1x2+2ax2x3为正定二次型,则a的取值范围________.
某企业为生产甲、乙两种型号的产品投入的同定成本为10000(万元).设该企业生产甲、乙两种产品的产量分别为x(件)和y(件),且这两种产品的边际成本分别为20+x/2(万元/件)与6+y(万元/件).求总产量为50件且总成本最小时甲产品的边际成本,并解
已知对于n阶方阵A,存在自然数k,使得Ak=0,试证明矩阵E-A可逆,并求出逆矩阵的表达式(E为n阶单位矩阵).
求幂级数x2n在区间(-1,1)内的和函数S(x).
已知二次型f(x1,x2,x3)=x12+ax22+x32+2x1x2-2ax1x3-2x2x3的正、负惯性指数都是1,则a=_________.
计算下列各定积分:
设有一根细棒,取棒的一端作为原点,棒上任意点的坐标为x.于足分布在区间[0,x]上细棒的质量m是x的函数m=m(x).应怎样确定细棒在点x。处的线密度(对于均匀细棒来说,单位长度细棒的质量叫做这细棒的线密度)?
已知β1,β2是非齐次线性方程组Ax=b的两个不同的解,α1,α2是对应齐次线性方程组Ax=0的基础解系,k1,k2为任意常数,则方程组Ax=b的通解必是
随机试题
下列哪项不是SLE淋巴结肿大的临床表现
检查脊柱的压痛的方法和临床意义正确的是
4周岁小儿的身长应为
在药品零售企业中,需要凭处方方可销售的特殊药品复方制剂除了()。
(2005年)pz波函数角度分布形状为()。
按时间分类,支付可分为()。
根据《个人外汇管理办法》的规定,个人外汇账户按账户性质可划分为()。
若商业银行核心资本距监管当局的要求相差较远,可以采取()的方式来提高资本充足率。
已知A是m×n矩阵,m<n证明:AAT是对称阵,并且AAT正定的充要条件是r(A)=m.
Onwhataspectofweatherforecastingdoestheconversationfocus?
最新回复
(
0
)