首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x2,x3)=xTAx在正交变换x=Qy下的标准形为y12+y22,且Q的第三列为 (Ⅰ)求A; (Ⅱ)证明A+E为正定矩阵,其中E为三阶单位矩阵。
设二次型f(x1,x2,x3)=xTAx在正交变换x=Qy下的标准形为y12+y22,且Q的第三列为 (Ⅰ)求A; (Ⅱ)证明A+E为正定矩阵,其中E为三阶单位矩阵。
admin
2017-01-21
33
问题
设二次型f(x
1
,x
2
,x
3
)=x
T
Ax在正交变换x=Qy下的标准形为y
1
2
+y
2
2
,且Q的第三列为
(Ⅰ)求A;
(Ⅱ)证明A+E为正定矩阵,其中E为三阶单位矩阵。
选项
答案
(Ⅰ)由题意知Q
T
AQ=Λ,其中Λ=[*] 则A=QΛQ
T
,设Q的其他任一列向量为 (x
1
,x
2
,x
3
)
T
。因为Q为正交矩阵,所以 (x
1
,x
2
,x
3
)[*] 即x
1
+x
3
=0,其基础解系含两个线性无关的解向量,即为α
1
=(—1,0,1)
T
,α
2
=(0,1,0)
T
。把α
1
单位化得β
1
=[*](—1,0,1)
T
,所以 [*] (Ⅱ)证明:因为(A+E)
T
=A
T
+E=A+E,所以A+E为实对称矩阵。 又因为A的特征值为1,1,0,所以A+E特征值为2,2,1,都大于0,因此A+E为正定矩阵。
解析
转载请注明原文地址:https://kaotiyun.com/show/I2H4777K
0
考研数学三
相关试题推荐
互不相容事件与对立事件的区别何在?说出下列各对事件之间的关系:x>20与x≤20;
在一通信渠道中,能传送字符AAAA,BBBB,CCCC三者之一,由于通信噪声干扰,正确接收到被传送字母的概率为0.6,而接收到其他两个字母的概率均为0.2,假设前后字母是否被歪曲互不影响.求收到字符ABCA的概率;
设A为n阶实矩阵,AT为A的转置矩阵,则对于线性方程组(I)AX=O和(Ⅱ)ATAX=0必有().
D是正方形区域,因在D上被积函数分块表示为[*]
设矩阵则A与B().
设A,B为同阶可逆矩阵,则().
将函数f(x)=x/(2+x-x2)展开成x的幂级数.
已知二次型f(x1,x2,x3)=x12+ax22+x32+2x1x2-2ax1x3-2x2x3的正、负惯性指数都是1,则a=_________.
设A为2阶矩阵,α1,α2为线性无关的2维列向量,Aα1=0,Aα2=2α1+α2,则A的非零特征值为________.
设f(x)在x=0的某邻域内连续则f(x)在x=0处
随机试题
引起Ⅱ型呼吸衰竭最重要的机制是
非甾体抗炎药是一类不含有甾体结构的抗炎药,自阿司匹林于1898年首次合成后,100多年来已有百余种上千个品牌上市。以吲哚美辛为代表的芳基烷酸类非甾体药在临床的作用是
依据《特种设备安全监察条例》的规定,特种设备投入使用前,使用单位应当核对其是否附有()规定的相关文件。
下列不属于火灾探测报警系统组成部件的是()。
能够让理财师在与不同客户沟通时,比较容易把握其在财务决策时的心理的客户分类方法是()。
下列项目中,能同时引起资产和利润总额减少的项目有()。
(Ⅰ)设0<x<+∞,证明存在η,0<η<1,使;(Ⅱ)求η关于x的函数关系的具体表达式η=η(x),并求出当0<x<+∞时函数η(x)的值域.
若有定义:charc;intd;,程序运行时输入:c=1d=2<回车>,能把字符1输入给变量c、把整数2输入给变量d的输入语句是()。
"Down-to-earth"meanssomeoneorsomethingthatishonest,realisticandeasytodealwith.Itisapleasuretofind【C1】______wh
Speech--theactofutteringsoundstoconveymeaning--isakindofhumanaction.Likeanyotherconstantly【S1】______action,sp
最新回复
(
0
)