首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x2,x3)=xTAx在正交变换x=Qy下的标准形为y12+y22,且Q的第三列为 (Ⅰ)求A; (Ⅱ)证明A+E为正定矩阵,其中E为三阶单位矩阵。
设二次型f(x1,x2,x3)=xTAx在正交变换x=Qy下的标准形为y12+y22,且Q的第三列为 (Ⅰ)求A; (Ⅱ)证明A+E为正定矩阵,其中E为三阶单位矩阵。
admin
2017-01-21
54
问题
设二次型f(x
1
,x
2
,x
3
)=x
T
Ax在正交变换x=Qy下的标准形为y
1
2
+y
2
2
,且Q的第三列为
(Ⅰ)求A;
(Ⅱ)证明A+E为正定矩阵,其中E为三阶单位矩阵。
选项
答案
(Ⅰ)由题意知Q
T
AQ=Λ,其中Λ=[*] 则A=QΛQ
T
,设Q的其他任一列向量为 (x
1
,x
2
,x
3
)
T
。因为Q为正交矩阵,所以 (x
1
,x
2
,x
3
)[*] 即x
1
+x
3
=0,其基础解系含两个线性无关的解向量,即为α
1
=(—1,0,1)
T
,α
2
=(0,1,0)
T
。把α
1
单位化得β
1
=[*](—1,0,1)
T
,所以 [*] (Ⅱ)证明:因为(A+E)
T
=A
T
+E=A+E,所以A+E为实对称矩阵。 又因为A的特征值为1,1,0,所以A+E特征值为2,2,1,都大于0,因此A+E为正定矩阵。
解析
转载请注明原文地址:https://kaotiyun.com/show/I2H4777K
0
考研数学三
相关试题推荐
互不相容事件与对立事件的区别何在?说出下列各对事件之间的关系:“20件产品全是合格品”与“20件产品中恰有一件是废品”;
已知y=x/lnx是微分方程y’=y/x+φ(x/y)的解,则φ(x/y)的表达式为
在电炉上安装了4个温控器,其显示温度的误差是随机的.在使用过程中,只要有2个温控器显示的温度不低于临界温度to,电炉就断电.以E表示事件“电炉断电”,设T(1)≤T(2)≤T(3)≤T(4)…为4个温控器显示的按递增顺序排列的温度值,则事件E等于(
一汽车沿一街道行驶,需要通过三个均设有红绿信号灯的路口,每个信号灯为红或绿与其他信号灯为红或绿相互独立,且红绿两种信号灯显示的时间相等,以X表示汽车首次遇到红灯前已通过的路口的个数,求X的概率分布(信号灯的工作是相互独立的).
设随机变量X服从正态分布N(0,1),对给定的α∈(0,1),数uα满足P{X>uα}=α,若P{|x|<x}=α,则x等于().
设随机变量X与Y独立,其中X的概率分布为而Y的概率密度为F(y),求随机变量u=X+Y的概率密度g(u).
当x→0时,下列四个无穷小量中,哪一个是比其他三个更高阶的无穷小量?()
已知二次型f(x1,x2,x3)=x12+5x22+x32+2x1x2+2ax2x3为正定二次型,则a的取值范围________.
ln2本题的被积函数是幂函数与指数函数两类不同的函数相乘,应该用分部积分法.[解法一]因为所以而故原式=In2.[解法二]
设{an}与{bn}为两个数列,下列说法正确的是().
随机试题
土地抵押权变更登记,下列()情形的申请人包括抵押人、抵押权人和受让人。
如图4-60所示均质圆盘放在光滑水平面上受力F作用,则质心C的运动为()。
砂砾石地基的特点包括()。
下列选项中,属于当事人提起诉讼必须符合的条件的有()。
人工智能听起来很遥远,其实已经______到我们的日常工作和生活中了。人工智能的应用,让生活更便捷、更有乐趣,节约时间、解放体力,甚至未来机器将______人类进行一些基础性的劳作,这个场景令人憧憬。
快递包装标准滞后、回收循环难度大、环保意识不足,是阻碍快递包装绿色化的三大瓶颈。要打破这些瓶颈,还有大量的工作要做。比如,必须解决现行标准多为推荐性指标、约束力不强、执行有难度等问题,出台国家级的强制性标准;要解决对快递件的“五花大绑”、过度包装问题,首先
阅读下述材料,谈谈你对班主任做法的认识。一位家长在星期一发现儿子上学时磨磨蹭蹭,遂追问是怎么回事,孩子犹豫了半天才道出实情。原来在上个星期二早上,班主任老师召开全班同学会议,用无记名的方式评选3名“坏学生”,因有两名同学在最近违反了学校纪律,无可
A、 B、 C、 D、 B
ALACRITY:
A、Becausewemightbeofferedadishofinsects.B、Becausenothingbutfreshlycookedinsectsareserved.C、Becausesomeyuppies
最新回复
(
0
)