首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x2,x3)=xTAx在正交变换x=Qy下的标准形为y12+y22,且Q的第三列为 (Ⅰ)求A; (Ⅱ)证明A+E为正定矩阵,其中E为三阶单位矩阵。
设二次型f(x1,x2,x3)=xTAx在正交变换x=Qy下的标准形为y12+y22,且Q的第三列为 (Ⅰ)求A; (Ⅱ)证明A+E为正定矩阵,其中E为三阶单位矩阵。
admin
2017-01-21
78
问题
设二次型f(x
1
,x
2
,x
3
)=x
T
Ax在正交变换x=Qy下的标准形为y
1
2
+y
2
2
,且Q的第三列为
(Ⅰ)求A;
(Ⅱ)证明A+E为正定矩阵,其中E为三阶单位矩阵。
选项
答案
(Ⅰ)由题意知Q
T
AQ=Λ,其中Λ=[*] 则A=QΛQ
T
,设Q的其他任一列向量为 (x
1
,x
2
,x
3
)
T
。因为Q为正交矩阵,所以 (x
1
,x
2
,x
3
)[*] 即x
1
+x
3
=0,其基础解系含两个线性无关的解向量,即为α
1
=(—1,0,1)
T
,α
2
=(0,1,0)
T
。把α
1
单位化得β
1
=[*](—1,0,1)
T
,所以 [*] (Ⅱ)证明:因为(A+E)
T
=A
T
+E=A+E,所以A+E为实对称矩阵。 又因为A的特征值为1,1,0,所以A+E特征值为2,2,1,都大于0,因此A+E为正定矩阵。
解析
转载请注明原文地址:https://kaotiyun.com/show/I2H4777K
0
考研数学三
相关试题推荐
计算
已知函数f(u,v)具有二阶连续偏导数,f(1,1)=2是f(u,v)的极值,z=f(x+y,f(x,y)).求
某厂家生产的一种产品同时在两个市场上销售,售价分别为p1,p2,需求函数分别为q1=24-0.2p1,q2=10-0.05p2,总成本函数为C=35+40(q1+q2),问厂家如何确定两个市场的销售价格能使其获得总利润最大?最大利润为多少?
设向量组α1,α2,α3线性无关,则下列向量组中线性无关的是().
设X,Y是相互独立的随机变量,其分布函数分别为FY(x)、FY(y),则Z=min(X,Y)的分布函数是().
设A,B为同阶方阵,(1)如果A,B相似,试证A,B的特征多项式相等.(2)举一个二阶方阵的例子说明(1)的逆命题不成立.(3)当A,B均实对称矩阵时,试证(1)的逆命题成立.
一电子仪器由两个部件构成,以X和Y分别表示两个部件的寿命(单位:千小时),已知X和Y的联合分布函数为(I)X和Y是否独立?(Ⅱ)求两个部件的寿命都超过100小时的概率α.
设向量组α1,α2,α3线性无关,问常数a,b,c满足什么条件时,aα1-α2,bα2-α3,cα3-α1线性相关?
设函数y=y(x)往(-∞,+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数.试将x=x(y)所满足的微分方程d2x/dy2+(y+sinx)(dx/dy)3=0变换为y=y(x)满足的微分方程;
随机试题
A.心悸不安,胸闷气短,面色苍白,形寒肢冷B.心悸,善惊易恐,坐卧不安,少寐多梦C.两者均是D.两者均不是心阳不足之惊悸的临床表现是
A.枸橼酸铁铵B.维生素KC.氨甲环酸D.硫酸鱼精蛋白E.甲酰四氢叶素钙抢救华法林引起的严重的自发性出血的药物是
某县“大队长酒楼”自创品牌后声名渐隆,妇孺皆知。同县的“牛记酒楼”经暗访发现,“大队长酒楼”经营特色是,服务员统一着上世纪60年代服装,播放该年代歌曲,店堂装修、菜名等也具有时代印记。“牛记酒楼”遂改名为“老社长酒楼”,服装、歌曲、装修、菜名等一应照搬。根
按照国务院有关规定批准开工报告的建筑工程,因故不能按期开工超过6个月的,建设单位应当()手续。
根据施工过程控制中关于技术交底的规定,技术交底文件的编制者是()。
水利水电工程的永久性主要建筑物的级别,划分为()级。
()对于轿车相当于牡丹对于()
新中国建立时制定的外交政策是()。
由于生产力和生产关系,经济基础和上层建筑还存在一系列矛盾,因此,我国必须进行社会主义改革。当前我国进行的社会主义改革的性质是()。
SQL的SELECT语句中,“HAVING”用来筛选满足条件的
最新回复
(
0
)