首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知函数f(x,y)具有二阶连续偏导数,且f(1,y)=0,f(x,1)=0,f(x,y)dxdy=a,其中D={(x,y)|0≤x≤1,0≤y≤1},计算二重积分I=xyf"xy(x,y)dxdy。
已知函数f(x,y)具有二阶连续偏导数,且f(1,y)=0,f(x,1)=0,f(x,y)dxdy=a,其中D={(x,y)|0≤x≤1,0≤y≤1},计算二重积分I=xyf"xy(x,y)dxdy。
admin
2018-04-14
97
问题
已知函数f(x,y)具有二阶连续偏导数,且f(1,y)=0,f(x,1)=0,
f(x,y)dxdy=a,其中D={(x,y)|0≤x≤1,0≤y≤1},计算二重积分I=
xyf"
xy
(x,y)dxdy。
选项
答案
将二重积分[*]xyf"
xy
(x,y)dxdy转化为累次积分可得 [*]xyf"
xy
(x,y)dxdy=∫
0
1
dy∫
0
1
xyf"
xy
(x,y、)dx。 首先考虑∫
0
1
xyf"
xy
(x,y)dx,注意这里是把变量y看做常数的,故有 ∫
0
1
xyf"
xy
(x,y)dx=y∫
0
1
xdf’
y
(x,y)=xyf’
y
(x,y)|
0
1
-∫
0
1
yf’
y
(x,y)dx =yf’
y
(1,y)-∫
0
1
yf’
y
(x,y)dx。 由f(1,y)=f(x,1)=0易知f’
y
(1,y)=f’
x
(x,1)=0。 故 ∫
0
1
xyf"
xy
(x,y)dx=-∫
0
1
yf’
y
(x,y)dx, [*]xyf"
xy
(x,y)dxdy=∫
0
1
dy∫
0
1
xyf"
xy
(x,y)dx=-∫
0
1
dy∫
0
1
yf’
y
(x,y)dx, 对该积分交换积分次序可得 -∫
0
1
dy∫
0
1
yf’
y
(x,y)dx=-∫
0
1
dx∫
0
1
yf’
y
(x,y)dy。 再考虑积分∫
0
1
yf’
y
(x,y)dy,注意这里是把变量x看作常数的,故有 ∫
0
1
yf’
y
(x,y)dy=∫
0
1
ydf(x,y)=yf(x,y)|
0
1
-∫
0
1
f(x,y)dy=-∫
0
1
f(x,y)dy。 因此 [*]xyf"
xy
(x,y)dxdy=-∫
0
1
dx∫
0
1
代0t,小dxdyyf’
y
(x,y)dy=∫
0
1
dx∫
0
1
f(x,y)dy=[*]f(x,y)dxdy=a。
解析
转载请注明原文地址:https://kaotiyun.com/show/I3k4777K
0
考研数学二
相关试题推荐
已知函数f(x,y)在点(0,0)某邻域内连续,且,则
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:当ξTξ=1时,A是不可逆矩阵.
设A为n阶非奇异矩阵,a为n维列向量,b为常数,记分块矩阵其中A*是矩阵A的伴随矩阵,E为n阶单位矩阵.证明矩阵Q可逆的充分必要条件是aTA-1a≠b.
设函数f(u)可导,y=f(x2)当自变量x在x=-1处取得增量△x=-0.1时,相应的函数增量△y的线性主部为0.1,则fˊ(1)=().
设周期函数f(x)在(﹣∞,+∞)内可导,周期为4,又则曲线y=f(x)在点(5,f(5))处的切线的斜率为().
设函数f(x)在[0,1]上连续,(0,1)内可导,且证明在(0,1)内存在一点,使fˊ﹙C﹚=0.
已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1.证明:(I)存在ξ∈(0,1),使得f(ξ)=1-ξ;(Ⅱ)存在两个不同的点叼,η∈(0,1),使得fˊ(η)fˊ(ζ)=1.
设函数f(x)在(-∞,+∞)内有定义,xo≠0是函数f(x)的极大值点,则().
设A为n阶方阵,A*为A的伴随矩阵,且A11≠0,证明:方程组Ax=b(b≠0)有无穷多解的充要条件中b为A*x=0的解.
设f(x,y)为连续函数,则等于
随机试题
下列含有两个羧基的氨基酸是:
喉麻痹中以呼吸困难为主要症状的是
以下均可见气管移位,除了( )
清算合伙企业时,其所欠税款、工资、企业债务、清算费用的清偿顺序正确的是()。
以募集方式设立股份有限公司的,发起人认购的股份不得少于公司股份总数的(),其余股份应向社会公众募集。
劳动经济学的规范研究方法的特点包括()。
1997年夏,原济南海关副关长高某认识了港商李勇健,二人交往密切。1998年春,高、李二人合谋从香港空运575只瑞士高档手表至济南入境,受高某指使,海关调查处副科长刘某明知该批货物未办理任何报关手续,却予以放行,经查该批手表价值人民币1774746.24元
Whydosomanypeoplebecomedependentoncigarettes?
【B1】【B8】
Mike’suncleinsists______inthishotel.
最新回复
(
0
)