首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知平面上三条直线的方程为 l1:aχ+2by+3c=0, l2:bχ+2cy+3a=0, l3:cχ+2ay+3b=0. 试证这三条直线交于一点的充分必要条件为a+b+c=0.
已知平面上三条直线的方程为 l1:aχ+2by+3c=0, l2:bχ+2cy+3a=0, l3:cχ+2ay+3b=0. 试证这三条直线交于一点的充分必要条件为a+b+c=0.
admin
2018-11-23
50
问题
已知平面上三条直线的方程为
l
1
:aχ+2by+3c=0,
l
2
:bχ+2cy+3a=0,
l
3
:cχ+2ay+3b=0.
试证这三条直线交于一点的充分必要条件为a+b+c=0.
选项
答案
l
1
,l
2
,l
3
交于一点即方程组 [*] 有唯一解,即系数矩阵的秩=增广矩阵的秩=2. f 记[*] 则方程组系数矩阵的秩=r(a),增广矩阵的秩=r(B),于是l
1
,1
2
,1
3
交于一点[*]r(A)=r(B)=2. 必要性:由于r(B)=2,则|B|=0.计算出 |B|=-(a+b+c)(a
2
+b
2
+c
2
-ab-ac-bc) =-[*](a+b+c)[(a-b)
2
+(b-c)
2
+(c-a)
2
]. a,b,c不会都相等(否则r(A)=1),即(a-b)
2
+(b-c)
2
+(c-a)
2
≠0.得a+b+c=0. 充分性:当a+b+c=0时,|B|=0,于是r(A)≤r(B)≤2.只用再证r(a)=2,就可得到 r(a)=r(B)=2. 用反证法.若r(a)<2,则A的两个列向量线性相关.不妨设第2列是第1列的A倍,则b=λa,c=λb,a=λc.于是λ
3
a=a,λ
3
b=b,λ
3
c=c,由于a,b,c不能都为0,得λ
3
=1,即λ=1,于是a=b=c.再由a+b+c=0,得a=b=c=0,这与直线方程中未知数的系数不全为0矛盾.
解析
转载请注明原文地址:https://kaotiyun.com/show/I9M4777K
0
考研数学一
相关试题推荐
设A=已知线性方程组Ax=b存在2个不同的解.(I)求λ,a;(Ⅱ)求方程组Ax=b的通解.
设事件A与B相互独立,已知它们都不发生的概率为0.16,又知A发生B不发生的概率与B发生A不发生的概率相等,则A与B都发生的概率是__________.
设随机变量,i=1,2;且P(X1X2=0}=1.则P{X1=X2)等于
袋中有a白b黑共a+b只球,现从中随机、不放回地一只一只地取球,直至袋中所剩之球同色为止.求袋中所剩之球全为白球的概率.
设有向量α1=(1,2,0)T,α2=(1,a+2,一3a)T,α3=(一1,一b—2,a+2b)T,β=(1,3,一3)T.试讨论当a、b为何值时,(1)β不能由α1,α2,α3线性表示;(2)β可由α1,α2,α3惟一地线性表示,并求出表示式;(
设随机变量X在区间(一1,1)上服从均匀分布,Y=X2,求(X,Y)的协方差矩阵和相关系数.
某种清漆的9个样品的干燥时间(小时)为:6.5,5.8,7,6.5,7,6.3,5.6,6.1,5.设干燥时间X~N(μ,σ2),求μ的置信度为0.95的置信区间.在(1)σ=0.6(小时);(2)σ未知.两种情况下作.(u0.975=1.96,t0.97
(94年)已知A、B两个事件满足条件P(AB)=,且P(A)-p,则P(B)=______.
设α1=(1,1,1,3)T,α2=(-1,-3,5,1)T,α3=(3,2,-1,p+2)T,α4=(-2,-6,10,p)T.p为什么数时,α1,α2,α3,α4线性相关?此时求r(α1,α2,α3,α4)和写出一个最大线性无关组.
随机试题
股票采用代销方式,代销期满后,向投资者出售的股票数量低于拟公开发行股票的数量的多少比例的,为发行失败?()
真空越高,其绝对压力越大。
人们常说“管理是一门艺术”强调的是()。
女,60岁,因慢性支气管炎继发感染住院月余,2天前突发高热,咳嗽加重,咳黄色脓痰,后为乳状脓血痰,伴气急、发绀,右肩胛下散在湿啰音。白细胞计数20×109/L,有中毒颗粒。胸部X线片示肺下野大片絮状浓淡不均阴影。最可能的诊断是
母乳喂养的足月婴儿,应于下列哪个时期服用维生素D
甲、乙二人为夫妻,甲赴外地打工五年未归。甲之合伙人丙与乙协商由乙请求法院宣告甲死亡,甲被宣告死亡后,乙依继承法取得甲的遗产,包括房屋一栋,存款10万元及在合伙企业中的股份若干,后甲返还,则甲有权:
某城市一公交站台前,一位独自坐轮椅的妇女要上车,车站工作人员考虑到她行动不便,轮椅在车上缺乏安全,司机又没法照顾她,只得婉拒这位妇女乘车。该妇女无奈之下,求助于警察。你认为这种情境说明了何种最重要的问题?()
杰克.伦敦规模最大的一部长篇小说是(),代表了他文学创作的最高成就。
EuphemismDefinition-lexicalmeaning:—speakingwithgoodwordsorin【T1】______【T1】______-apolite,roundabout
DeclineofColoradoRiverisSevere[A]TheColoradoRiver,whichflowedacrossthelandwithsuchgustothatitcarvedthemajes
最新回复
(
0
)