首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知平面上三条直线的方程为 l1:aχ+2by+3c=0, l2:bχ+2cy+3a=0, l3:cχ+2ay+3b=0. 试证这三条直线交于一点的充分必要条件为a+b+c=0.
已知平面上三条直线的方程为 l1:aχ+2by+3c=0, l2:bχ+2cy+3a=0, l3:cχ+2ay+3b=0. 试证这三条直线交于一点的充分必要条件为a+b+c=0.
admin
2018-11-23
52
问题
已知平面上三条直线的方程为
l
1
:aχ+2by+3c=0,
l
2
:bχ+2cy+3a=0,
l
3
:cχ+2ay+3b=0.
试证这三条直线交于一点的充分必要条件为a+b+c=0.
选项
答案
l
1
,l
2
,l
3
交于一点即方程组 [*] 有唯一解,即系数矩阵的秩=增广矩阵的秩=2. f 记[*] 则方程组系数矩阵的秩=r(a),增广矩阵的秩=r(B),于是l
1
,1
2
,1
3
交于一点[*]r(A)=r(B)=2. 必要性:由于r(B)=2,则|B|=0.计算出 |B|=-(a+b+c)(a
2
+b
2
+c
2
-ab-ac-bc) =-[*](a+b+c)[(a-b)
2
+(b-c)
2
+(c-a)
2
]. a,b,c不会都相等(否则r(A)=1),即(a-b)
2
+(b-c)
2
+(c-a)
2
≠0.得a+b+c=0. 充分性:当a+b+c=0时,|B|=0,于是r(A)≤r(B)≤2.只用再证r(a)=2,就可得到 r(a)=r(B)=2. 用反证法.若r(a)<2,则A的两个列向量线性相关.不妨设第2列是第1列的A倍,则b=λa,c=λb,a=λc.于是λ
3
a=a,λ
3
b=b,λ
3
c=c,由于a,b,c不能都为0,得λ
3
=1,即λ=1,于是a=b=c.再由a+b+c=0,得a=b=c=0,这与直线方程中未知数的系数不全为0矛盾.
解析
转载请注明原文地址:https://kaotiyun.com/show/I9M4777K
0
考研数学一
相关试题推荐
已知A是三阶实对称矩阵,满足A4+2A3+A2+2A=O,且秩r(A)=2,求矩阵A的全部特征值,并求秩r(A+E)。
设二维随机变量(X,Y)的概率密度为求:(Ⅰ)(X,Y)的边缘概率密度fX(x)fY(y);(Ⅱ)z=2X一Y的概率密度fZ(z).
设D是由x2+y2≤a2,y≥0所确定的上半圆域,则D的形心的y坐标=_________。
设X~N(μ,σ2),其中σ2已知,μ为未知参数.从总体X中抽取容量为16的简单随机样本,且μ的置信度为0.95的置信区间中的最小长度为0.588,则σ2=___________·
微分方程y’’-7y’=(x-1)2的待定系数法确定的特解形式(系数的值不必求出)是________
曲线y=lnx与盲线x+y=1垂直的切线方程为__________.
某公司每年的工资总额在比上一年增加20%的基础上再追加2百万元.若以W1表示第t年的工资总额(单位:百万元),则Wt满足的差分方程是__________.
函数在(0,0)点处
设某种元件的寿命为随机变量且服从指数分布.这种元件可用两种方法制得,所得元件的平均寿命分别为100和150(小时),而成本分别为c和2c元.如果制得的元件寿命不超过200小时,则须进行加工,费用为100元.为使平均费用较低,问c取值时,用第2种方法较好?
(09年)设总体X的概率密度为其中参数λ(λ>0)未知,X1,X2,…,Xn是来自总体X的简单随机样本.(I)求参数λ的矩估计量;(Ⅱ)求参数λ的最大似然估计量.
随机试题
卵泡颗粒细胞主要分泌()。
按照法律规定,下列各选项中属于民事法律行为成立要件的有()。
与计算营业利润有关的项目是()。
企业在筹建期间借入的长期借款所发生的不符合资本化条件的利息,应计入“管理费用”。()
下列各项中应通过“销售费用”科目核算的有()。
运动时,当人体生理惰性克服后,机能活动在一段时间内保持一个较高水平,这种状态称为()。
从政策效应看,中国区域政策培育了经济发展的重点区域,促进了欠发达地区的发展.增强了区域发展的协调性,拓展了区域合作的深度和广度,_______了区域发展的内涵。但相对于中国幅员辽阔的地域而言,我国以往的区域发展政策存在按大区域简单划分的问题.需要通过设计更
小李在写研究报告的时候,在正文中用访谈记录论证了自己的观点。但从其整个研究报告中,看不到他的访谈的提纲。他的访谈提纲应该放在研究报告的
在C语言中,函数调用时()。
A、Sheneedsmoretimetogetreadyforthedinner.B、Shethoughtthedinnerwasatanothertime.C、Sheforgotabouttheplanssh
最新回复
(
0
)