首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1999年)设向量组α1=[1,1,1,3]T,α2=[-1,-3,5,1]T,α3=[3,2,-1,p+2]T,α4=[-2.-6,10,p]T. (1)p为何值时,该向量组线性无关?并在此时将向量α=[4,1,6,10]T用α1,α2,α3,α4线性
(1999年)设向量组α1=[1,1,1,3]T,α2=[-1,-3,5,1]T,α3=[3,2,-1,p+2]T,α4=[-2.-6,10,p]T. (1)p为何值时,该向量组线性无关?并在此时将向量α=[4,1,6,10]T用α1,α2,α3,α4线性
admin
2018-07-30
83
问题
(1999年)设向量组α
1
=[1,1,1,3]
T
,α
2
=[-1,-3,5,1]
T
,α
3
=[3,2,-1,p+2]
T
,α
4
=[-2.-6,10,p]
T
.
(1)p为何值时,该向量组线性无关?并在此时将向量α=[4,1,6,10]
T
用α
1
,α
2
,α
3
,α
4
线性表出;
(2)p为何值时,该向量组线性相关?并在此时求出它的秩和一个极大线性无关组.
选项
答案
对矩阵A=[α
1
α
2
α
3
α
4
┆α]作初等行变换: [*] (1)当p≠2时,矩阵[α
1
α
2
α
3
α
4
]的秩为4,即向量组α
1
,α
2
,α
3
,α
4
线性无关.此时设α=x
1
α
1
+x
2
α
2
+x
3
α
3
+x
4
α
4
.解得 x
1
=2,x
2
=[*],x
3
=1,x
4
=[*] 即有α=2α
1
+[*]α
2
+α
3
+[*]α
1
. (2)当p=2时,向量组α
1
α
2
α
3
α
4
线性相关.此时该向量组的秩为3.α
1
,α
2
,α
3
(或α
1
,α
3
,α
4
)为其一个极大线性无关组.
解析
转载请注明原文地址:https://kaotiyun.com/show/I9j4777K
0
考研数学二
相关试题推荐
设X,Y是离散型随机变量,其联合概率分布为P{X=xi,Y=yj}=pij(i,j=1,2,…),边缘概率分别为piX和pjY(i,j=1,2,…),则X与Y相互独立的充要条件是pij=piXpjY(i,j=1,2,…)
A是二阶矩阵,有特征值λ1=1,λ2=2,f(x)=x2一3x+4,则f(A)=________.
已知函数f(x)=求f(x)零点的个数.
证明:对任意的x,y∈R且x≠y,有
设A为n阶矩阵,α1,α2,α3为n维列向量,其中α1≠0,且Aα1=α1,Aα2=α1+α2,Aα3=α2+α3,证明:α1,α2,α3线性无关.
设A,B都是n阶矩阵,其中B是非零矩阵,且AB=O,则().
求曲y=x2-2x、y=0、x=1、x=3所围成区域的面积S,并求该区域绕y轴旋转一周所得旋转体的体积V.
设f(x)在[0,1]上连续且满足f(0)=1,f’(x)-f(x)=a(x-1).y=f(x),x=0,x=1,y=0围成的平面区域绕x轴旋转一周所得的旋转体体积最小,求f(x).
随机试题
抗日战争胜利后,我国少数民族区域成立的第一个民主自治政府是()
十二指肠溃疡胃酸增多的原因是()
因突发性事件而影响证券交易正常进行时,证券交易所可以采取下列()措施。
下列各不同类型的基金中,()的预期收益最高。
学校体育的基本组织形式是()。
解决科技与经济结合的问题始终是科技体制改革的核心。以往的改革从技术商品化、科技运行机制、组织结构、人事制度等方面采取了一系列措施,主要着力在微观组织层面。改革进程发展到今天,需要更多地从宏观管理层面思考问题。换句话说,改革已经改到了推动科技体制改革的政府管
人,一旦生在什么地方、长在什么地方,那地方的山水草木、人文地理、村间小巷、乡俗民情,便会像盐渍刀斫一样深深地_______在他的心窝里,_______在他的记忆中,使他一生一世都会与之结下浓得化不开的乡情,时时刻刻都在怀念着、向往着、追忆着,每每使心中充满
甲欠乙15万元,甲的朋友丙与乙签订了保证合同,此时丙自有财产12万元,后甲不能清偿,乙诉至法院要求丙清偿15万元。根据我国有关的法律规定,下列选项表述正确的是()。
SomeyearsagoIwasofferedawritingassignmentthatwouldrequirethreemonthsoftravelthroughEurope.Ihadbeenabroada
howtoincreaseone’senergy
最新回复
(
0
)