首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1999年)设向量组α1=[1,1,1,3]T,α2=[-1,-3,5,1]T,α3=[3,2,-1,p+2]T,α4=[-2.-6,10,p]T. (1)p为何值时,该向量组线性无关?并在此时将向量α=[4,1,6,10]T用α1,α2,α3,α4线性
(1999年)设向量组α1=[1,1,1,3]T,α2=[-1,-3,5,1]T,α3=[3,2,-1,p+2]T,α4=[-2.-6,10,p]T. (1)p为何值时,该向量组线性无关?并在此时将向量α=[4,1,6,10]T用α1,α2,α3,α4线性
admin
2018-07-30
48
问题
(1999年)设向量组α
1
=[1,1,1,3]
T
,α
2
=[-1,-3,5,1]
T
,α
3
=[3,2,-1,p+2]
T
,α
4
=[-2.-6,10,p]
T
.
(1)p为何值时,该向量组线性无关?并在此时将向量α=[4,1,6,10]
T
用α
1
,α
2
,α
3
,α
4
线性表出;
(2)p为何值时,该向量组线性相关?并在此时求出它的秩和一个极大线性无关组.
选项
答案
对矩阵A=[α
1
α
2
α
3
α
4
┆α]作初等行变换: [*] (1)当p≠2时,矩阵[α
1
α
2
α
3
α
4
]的秩为4,即向量组α
1
,α
2
,α
3
,α
4
线性无关.此时设α=x
1
α
1
+x
2
α
2
+x
3
α
3
+x
4
α
4
.解得 x
1
=2,x
2
=[*],x
3
=1,x
4
=[*] 即有α=2α
1
+[*]α
2
+α
3
+[*]α
1
. (2)当p=2时,向量组α
1
α
2
α
3
α
4
线性相关.此时该向量组的秩为3.α
1
,α
2
,α
3
(或α
1
,α
3
,α
4
)为其一个极大线性无关组.
解析
转载请注明原文地址:https://kaotiyun.com/show/I9j4777K
0
考研数学二
相关试题推荐
设函数f(x)在x=0的某邻域内具有一阶连续导数,且f(0)≠0,f’(0)≠0,若af(h)+bf(2h)-f(0)在h→0时是比h高阶的无穷小,试确定a,b的值.
设ξ1=为矩阵A=的一个特征向量.(I)求常数a,b及ξ1所对应的特征值;(Ⅱ)矩阵A可否相似对角化?若A可对角化,对A进行相似对角化;若A不可对角化,说明理由.
设矩阵A=且A3=0(I)求a的值; (Ⅱ)若矩阵X满足X—XA2一AX+AXA2=E,其中E为3阶单位矩阵,求X.
已知函数f(x)在区间[a,+∞)上具有2阶导数,f(a)=0,(x)>0,(x)>0,设b>a,曲线y=f(x)在点(b,f(b))处的切线与x轴的交点是(x0,0),证明a<x0<b.
设函数f(x)=(α>0,β>0).若(x)在x=0处连续,则
证明:若矩阵A可逆,则其逆矩阵必然唯一.
求二元函数z=f(x,y)=x2y(4-x-y)在由x轴、y轴及x+y=6所围成的闭区域D上的最小值和最大值.
设n阶矩阵A满足(aE-A)(bE-A)=O且a≠b.证明:A可对角化.
三元二次型f=XTAX经过正交变换化为标准形f=y12+y22-2y32,且A*+2E的非零特征值对应的特征向量为α1=,求此二次型.
随机试题
设3阶实对称矩阵A满足A2=2A,已知二次型f(x1,x2,x3)=xTAx经正交变换x=Qy化为λy22+λy32(λ≠0)。其中Q=(b>0,c>0).求一个可逆线性变换x=Pz化f为规范形.
养阴清肺汤与百合固金汤两方均含有的药物是
男性,36岁。慢性腹泻2年,大便每日2~3次,有脓血。肠镜见直肠黏膜充血水肿,浅溃疡,黏膜活检可见隐窝脓肿。根据上述资料,最可能的诊断是
与危重患者尿潴留的发生有关的是()
反就业歧视不能过高寄望于惩罚性赔偿。毕竟,惩罚性赔偿作为一种事后的司法救济。维权过程漫长,举证困难重重,劳动者往往等不起也耗不起,如果企业的歧视作为极其隐蔽的话,受歧视劳动者要想告赢企业,绝非易事。而如果劳动部门对于就业歧视能有查处的高效率。这其实比惩罚性
在数据管理技术发展的三个阶段中,数据共享最好的是( )。
Wheredoesthisconversationmostprobablytakeplace?
A、Toattractdeposits.B、Toimprovebankservices.C、Toeliminatetheuseofthepassbook.D、Topromotebankingbusiness.C录音原文中
Jennifer:It’sfreezingoutside!______Ithoughtthiscoldfrontwassupposedtopass.Gabricla:Yeah,Ithoughtsotoo.That’s
AspectsThatMayFacilitateReadingⅠ.DeterminingyourpurposeA.Readingfor【1】likereadingthelatestHarryPottyNovelB
最新回复
(
0
)