首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,3]上连续,在(0,3)内二阶可导,且2f(0)=∫02f(t)dt=f(2)+f(3).证明: 存在ξ∈(0,3),使得f"(ξ)-2f’(ξ)=0.
设f(x)在[0,3]上连续,在(0,3)内二阶可导,且2f(0)=∫02f(t)dt=f(2)+f(3).证明: 存在ξ∈(0,3),使得f"(ξ)-2f’(ξ)=0.
admin
2015-06-30
78
问题
设f(x)在[0,3]上连续,在(0,3)内二阶可导,且2f(0)=∫
0
2
f(t)dt=f(2)+f(3).证明:
存在ξ∈(0,3),使得f"(ξ)-2f’(ξ)=0.
选项
答案
令φ(x)=e
-2x
f’(x),φ(ξ
1
)=φ(ξ
2
)=0, 由罗尔定理,存在ξ∈(ξ
1
,ξ
2
)[*](0,3),使得φ’(ξ)=0, 而φ’(x)=e
-2x
[f"(x)-2f’(x)]且e
-2x
≠0,故f"(ξ)-2f’(ξ)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/x834777K
0
考研数学二
相关试题推荐
若函数f(x)存在二阶导数,且其一阶导数的图形如图所示,则曲线y=f(x)的拐点个数为().
设f(x)二阶可导,且f(0)=0,令g(x)=(Ⅰ)确定a的取值,使得g(x)为连续函数;(Ⅱ)求g’(x)并讨论函数g’(x)的连续性。
由题设,设方程组的系数矩阵为A,则[*]
设二次型f=x12+x22+x32+2ax1x2+2βx2x3+2x1x3,经正交变换x=Py化成f=yx22+2y3x3,P是3阶正交矩阵.试求常数a、β.
设α=(1,1,-1)T是A=的一个特征向量。(Ⅰ)确定参数a,b的值及特征向量α所对应的特征值;(Ⅱ)问A是否可以对角化?说明理由。
设函数f(x)在[a,b]上连续,在(a,b)内二阶可导,且f(a)=f(b)=0,=0.证明:(Ⅰ)存在ξ∈(a,b),使得f(ξ)=0;(Ⅱ)存在η∈(a,b),使得f"(η)=f’(η).
设A是n阶实对称矩阵,B是n阶可逆矩阵,已知n维列向量α是A的属于特征值λ的特征向量,则矩阵(B-1AB)T属于特征值λ的特征向量是()。
设齐次线性方程组其中ab≠0,n≥2.讨论a,b取何值时,方程组只有零解、有无穷多个解?在有无穷多个解时求出其通解.
从点P1(1,0)作x轴的垂线,交抛物线y=x2于点Q1(1,1),再从Q1作这条抛物线的切线与x轴交于P2,然后又从P2作x轴的垂线,交抛物线于点Q2…,依次重复上述过程得到一系列的点P1,Q1,P2,Q2,…,Pn,Qn,….(Ⅰ)求(Ⅱ)求级数其
随机试题
烈士岳某,牺牲前为进城务工人员,妻子为镇中心小学教师,两人育有一子。岳某父母常年在外打工,8年前离婚。父母离婚后,岳某和妹妹由父亲抚养,与奶奶共同生活。奶奶现已70岁,仍在照顾岳某妹妹的日常生活。根据《烈士褒扬条例》,岳某的烈士褒扬金应发放给岳某的(
阅读《长亭送别》中的一段选文,回答问题:[滚绣球]恨相见得迟,怨归去得疾。柳丝长玉骢难系,恨不得倩疏林挂住斜晖。马儿选追的行,车儿快快的随,却告了相思回避,破题儿又早别离。听得道一声去也,松了金钏;遥望见十里长亭,减了玉肌。此恨谁知!分析“柳
关于翼静脉丛的交通途径错误的描述是
男,23岁。5周前因腹痛、腹泻脓血便,伴里急后重感,在当地医院诊断为“急性细菌性痢疾”,经口服环丙沙星治疗4天好转。1天前吃西瓜后再次出现腹痛、腹泻,大便每日达10余次,轻度里急后重。粪便镜检每高倍镜视野脓细胞20~40个,红细胞20~30个。考虑诊断为
A.7%~8%B.20%~40%C.40%~50%D.60%E.50%~70%体液量约占体重的
当房地产开发商将建成后的物业用于出租或()时,短期开发投资就转变成了长期置业投资。[2007年考题]
信用卡销户时,单位卡账户的余额应()。
下列选项中,银行不应该提供长期融资的是()。
根据土地增值税法律制度的规定,下列情形中,纳税人应当进行土地增值税清算的有()。
[*]
最新回复
(
0
)