首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是三阶可逆矩阵.如果A-1的特征值为1,2,3,则|A|的代数余子式A11+A22+A33=_____________.
设A是三阶可逆矩阵.如果A-1的特征值为1,2,3,则|A|的代数余子式A11+A22+A33=_____________.
admin
2016-11-03
36
问题
设A是三阶可逆矩阵.如果A
-1
的特征值为1,2,3,则|A|的代数余子式A
11
+A
22
+A
33
=_____________.
选项
答案
1
解析
A
ii
(i=1,2,3)为伴随矩阵A
*
的主对角线上的元素,其和A
11
+A
22
+A
33
恰等于A
*
的迹,即tr(A
*
)=A
11
+A
22
+A
33
.
但矩阵的迹又等于其特征值之和,于是归结求出A
*
的特征值.其求法有两种方法.
方法一 由题设知,A的特征值为λ
1
=1,λ
2
=1/2,λ
3
=1/3,于是|A|=λ
1
λ
2
λ
3
=1/6,则A
*
的特征值分别为
则 A
11
+A
22
+A
33
=tr(A
*
)=λ
1
*
+λ
2
*
+λ
3
*
=1/6+1/3+1/2=1.
方法二 由AA
*
=|A|E=(1/6)E,即(6A)A
*
=E,得到
A
*
=(6A)
-1
=(1/6)A
-1
.
由A
-1
的特征值为1,2,3,得到A
*
的三个特征值分别为
λ
1
*
=(1/6).1=1/6, λ
2
*
=(1/6).2=1/3, λ
3
*
(1/6).3=1/2,
故 A
11
+A
22
+A
33
=λ
1
*
+λ
2
*
+λ
3
*
=1/6+1/3+1/2=1.
转载请注明原文地址:https://kaotiyun.com/show/IHu4777K
0
考研数学一
相关试题推荐
从5个数:1,2,3,4,5中任取3个数,再按从小到大排列,设X表示中间那个数,求X的概率分布.
3个电子元件并联成一个系统,只有当3个元件损坏2个或2个以上时,系统便报废.已知电子元件的寿命服从参数为1/1000的指数分布,求系统的寿命超过1000h的概率.
由Y=lgx的图形作下列函数的图形:
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:A2=A的充要条件是ξTξ=1;
微分方程y"-2y’+2y=ex的通解为________.
在一通信渠道中,能传送字符AAAA,BBBB,CCCC三者之一,由于通信噪声干扰,正确接收到被传送字母的概率为0.6,而接收到其他两个字母的概率均为0.2,假设前后字母是否被歪曲互不影响.若收到字符为ABCA,问被传送字符为AAAA的概率是多大?
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
已知对于n阶方阵A,存在自然数k,使得Ak=0,试证明矩阵E-A可逆,并求出逆矩阵的表达式(层为n阶单位矩阵).
设f(x)是连续函数利用定义证明函数可导,且F’(x)=f(x);
某保险公司接受了10000辆电动自行车的保险,每辆车每年的保费为12元.若车丢失,则赔偿车主1000元.假设车的丢失率为0.006,对于此项业务,试利用中心极限定理,求保险公司:一年获利润不少于40000元的概率β;
随机试题
你越解释我越糊涂。
A.细长的膜性管道B.腹膜内位器官C.充盈时位于盆腔内D.尿道内口起于膀胱顶E.有3处生理狭窄男性尿道
骨骼肌纤维呈长圆柱状,有许多细胞核。()
A.疖B.痈C.丹毒D.急性蜂窝织炎E.脓肿由溶血性链球菌引起的皮下和筋膜感染是
使人心理上认为()的声音统称为噪声。
法定检验检疫是指( )。
甲公司与乙银行签订借款合同,约定借款期限自2010年3月25日起至2011年3月24日止。借款到期后,乙银行一直未向甲公司主张过债权,直至2013年4月15日,乙银行将该笔债权转让给丙公司并通知了甲公司。2013年5月16日,丁公司通过公开竞拍购买并接管了
作为唯一一支留在世界杯的南美球队,下一场比赛巴西将迎战淘汰了丹麦的英格兰球队。巴西队教头斯科拉里不愿谈论如何与英格兰较量,而他的队员也保持着清醒的头脑。在击败顽强的比利时队后,斯科拉里如释重负:“我现在脑子里想的第一件事就是好好放松一下。”依上文我们无法知
结合材料回答问题:材料1习近平:深刻认识建设现代化经济体系重要性推动我国经济发展焕发新活力迈上新台阶中共中央政治局2018年1月30日下午就建设现代化经济体系进行第三次集体学习。中共中央总书记习近平在主持学习时强调.建设现代化
求下列极限:
最新回复
(
0
)