首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1998年试题,九)设y=f(x)是区间[0,1]上的任一非负连续函数. 试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积,等于在区间[x0,1]上以y=f(x)为曲边的曲边梯形面积;
(1998年试题,九)设y=f(x)是区间[0,1]上的任一非负连续函数. 试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积,等于在区间[x0,1]上以y=f(x)为曲边的曲边梯形面积;
admin
2013-12-27
72
问题
(1998年试题,九)设y=f(x)是区间[0,1]上的任一非负连续函数.
试证存在x
0
∈(0,1),使得在区间[0,x
0
]上以f(x
0
)为高的矩形面积,等于在区间[x
0
,1]上以y=f(x)为曲边的曲边梯形面积;
选项
答案
(1)根据题意,假如存在满足条件的x
0
∈(0,1),即有[*]显然此式等价于要求函数[*]在(0,1)区间内有零点,循此思路,构造辅助函数[*]及F
2
’
(x)=F
1
(x)则可验证可取[*]又F
2
(0)=F
2
(1)=0,则由罗尔定理知,存在x
0
∈(0,1),使F
2
’
(x
0
)=F
1
(x
0
)=0,则结论(1)证毕.
解析
转载请注明原文地址:https://kaotiyun.com/show/TR54777K
0
考研数学一
相关试题推荐
设向量组α1,α2,…,αm(m>1)线性无关,且β=α1+α2+…+αm,证明:β-α1,β-α2,…,β-αm线性无关.
n维向量组α1,α2,…,αm(3≤m≤n)线性无关的充分必要条件是()
设3阶矩阵A的特征值为λ1=1,λ2=0,λ3=-1,对应的特征向量分别为α1,α2,α3,记P=(α3,α2,α1),则P-1AP=()
计算,其中L是用平面切为方体Ω={(x,y,z)|0≤x,y,z≤a}所得的切痕,从x轴正向看去为逆时针方向.
设y1=e-x,y2=2xe-x,y3=3ex是某三阶常系数齐次线性微分方程的解,试确定该微分方程的形式.
设有方程y“+(4x+e2y)(y‘)3=0.将方程转化为x为因变量,y作为自变量的方程;
设函数y=y(x)由参数方程确定,则=________.
自动生产线在调整后出现废品的概率为P,当在生产过程中出现废品时,立即重新进行调整,求在两次调整之间生产的合格品数X的分布列及其数学期望.
连续进行n次独立重复试验,设每次试验中成功的概率为p,0≤p≤1.问p为何值时,成功次数的方差为0?p为何值时,成功次数的方差达到最大?
(2005年试题,19)设函数φ(y)具有连续导数,在围绕原点的任意分段光滑简单闭曲线L上,曲线积分的值恒为同一常数.证明:对右半平面x>0内的任意分段光滑简单闭曲线C上,有
随机试题
胰的描述,不正确的是
习惯性流产定义为
检查:双眼睑结膜高度充血,耳前淋巴结肿大,结膜分泌物涂片见白细胞内大量革兰染色阴性双球菌。患者最可能诊断为
A.延髓下部的薄束核B.丘脑外侧核C.延髓下部的楔束核D.脊髓后角细胞E.后根神经节
A.舌尖B.舌中C.舌边D.舌底E.舌根心在舌分属部位是
开放性气胸患者呼吸困难最主要的急救措施是
关于仲裁裁决的撤销,根据我国现行法律,下列哪一选项是正确的?()
背景资料:某公司承建一座市政桥梁工程,桥梁上部结构为9孔30m后张法预应力混凝土T梁,桥宽横断面布置T梁12片,T梁支座中心线距梁端600mm,T梁横截面(单位:mm)如下图所示。项目部进场后,拟在桥位线路上现有城市次干道旁租地建设T
某甲投保了家庭财产保险基本险,保险金额为20万元,其中房屋及室内装潢的保险金额为10万元。保险合同约定出险时将按照保险财产的实际损失及当时的保障比例进行赔偿。某甲的房屋在保险期限内发生火灾,造成房屋及其室内装潢部分损失19000元。其中出险时房屋及其室内装
每个人都有自己的乐趣。有一位大师生前曾说过:“在工作和基本生活之外,我唯一做的事情就是看书。”可见()。
最新回复
(
0
)