首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1998年试题,九)设y=f(x)是区间[0,1]上的任一非负连续函数. 试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积,等于在区间[x0,1]上以y=f(x)为曲边的曲边梯形面积;
(1998年试题,九)设y=f(x)是区间[0,1]上的任一非负连续函数. 试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积,等于在区间[x0,1]上以y=f(x)为曲边的曲边梯形面积;
admin
2013-12-27
78
问题
(1998年试题,九)设y=f(x)是区间[0,1]上的任一非负连续函数.
试证存在x
0
∈(0,1),使得在区间[0,x
0
]上以f(x
0
)为高的矩形面积,等于在区间[x
0
,1]上以y=f(x)为曲边的曲边梯形面积;
选项
答案
(1)根据题意,假如存在满足条件的x
0
∈(0,1),即有[*]显然此式等价于要求函数[*]在(0,1)区间内有零点,循此思路,构造辅助函数[*]及F
2
’
(x)=F
1
(x)则可验证可取[*]又F
2
(0)=F
2
(1)=0,则由罗尔定理知,存在x
0
∈(0,1),使F
2
’
(x
0
)=F
1
(x
0
)=0,则结论(1)证毕.
解析
转载请注明原文地址:https://kaotiyun.com/show/TR54777K
0
考研数学一
相关试题推荐
设A=(aij)3×3是实正交矩阵,且a11=1,b=(1,0,0)T,则线性方程组Ax=b的解是____________________.
设αi=(αi1,αi2,…,αin)T(i=1,2,…,r,r<n)是n维实向量,且α1,α2,…,αr线性无关,已知β=(b1,b2,…,bn)T是线性方程组的非零解向量,试判断向量组α1,α2,…,αr,β的线性相关性.
设n阶方阵A=(aij)n×n的每行元素之和为0,其伴随矩阵A*≠O,若a11的代数余子式A11≠0,求方程组A*x=0的通解.
已知α1,α2,α3,α4是线性方程组Ax=0的一个基础解系,若β1=α1+tα2,β2=α2+tα3,β3=α3+tα4,β4=α4+tα1,讨论实数t满足什么关系时,β1,β2,β3,β4也是Ax=0的基础解系.
已知矩阵与矩阵等价.求a的值;
设,若方程组(2E+A)x=0存在非零解,求a的值,并求正交矩阵P,使P-1A2P=A.
将下列曲线化为参数方程:
计算(x2+y)dxdy,其中区域D是由x2+y2≤2,y≤1与两个坐标轴所围成的区域在第一象限的部分.
某保险公司设置某一险种,规定每一保单有效期为一年,有效理赔一次,每个保单收取保费500元,理赔额为40000元.据估计每个保单索赔概率为0.01,设公司共卖出这种保单8000个,求该公司在该险种上获得的平均利润.
已知电源电压X服从正态分布N(220,252),在电源电压处于X≤200V,200V<X<240V,X>240V三种情况下,某电子元件损坏的概率分别0.1,0.01,0.2.(1)试求该电子元件损坏的概率α;(2)该电子元件损坏时,电源电压在200
随机试题
简述劳务收入的确认条件。
以下不是接触放射线工作人员的膳食营养保障措施的是
关于模板安装质量要求的说法,正确的有()。
工程进度款的计算,主要涉及两个方面;一是工程量的计量;二是( )的计算方法。
根据我国《民事诉讼法》的有关规定,下列说法错误的是( )。
在进行资产减值测试时,下列各项中属于资产预计未来现金流量的是()。
()是为了提高周界安全防范的可靠性,将传感器安装在围墙或栅栏上及地层下。
一次偶然的机会,一个开办农民工子弟学校的朋友请我去参加他们的主题班会,和学生交流交流他们的理想问题。正是在这里,我听到了一个让我刻骨铭心的回答:“我要好好读书,长大之后去当城管。”问他为什么,这个小男孩则回答说:“如果我是城管,在街上碰到妈妈的菜摊时,可以
路由器命令“Router(config)#access-listldeny192.168.1.1”的含义是____________。
Largeorfatpeoplewhowanttolook______(small)thantheyareusuallyweardarkclothes.
最新回复
(
0
)