首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,E+A可逆,其中E是n阶单位矩阵.证明: (Ⅰ)(E—A)(E+A)-1=(E+A)-1(E—A); (Ⅱ)若A是反对称矩阵,则(E一A)(E+A)-1是正交矩阵; (Ⅲ)若A是正交矩阵,则(E—A)(E+A)-1是
设A是n阶矩阵,E+A可逆,其中E是n阶单位矩阵.证明: (Ⅰ)(E—A)(E+A)-1=(E+A)-1(E—A); (Ⅱ)若A是反对称矩阵,则(E一A)(E+A)-1是正交矩阵; (Ⅲ)若A是正交矩阵,则(E—A)(E+A)-1是
admin
2020-02-28
42
问题
设A是n阶矩阵,E+A可逆,其中E是n阶单位矩阵.证明:
(Ⅰ)(E—A)(E+A)
-1
=(E+A)
-1
(E—A);
(Ⅱ)若A是反对称矩阵,则(E一A)(E+A)
-1
是正交矩阵;
(Ⅲ)若A是正交矩阵,则(E—A)(E+A)
-1
是反对称矩阵.
选项
答案
利用反对称矩阵及正交矩阵的定义A
T
=一A及AA
T
=A
T
A=E证之. 证 (Ⅰ)因(E—A)(E+A)=E一A
2
=(E+A)(E—A), 在上式两边分别左乘、右乘(E+A)
-1
得到 (E+A)
-1
(E—A)(E+A)(E+A)
-1
=(E+A)
-1
(E+A)(E—A)(E+A)
-1
, 即 (E+A)
-1
(E—A)=(E一A)(E+A)
-1
. (Ⅱ)下证[(E—A)(E+A)
-1
][(E—A)(E+A)
-1
]
T
=E.事实上,由A
T
=一A得到 [(E—A)(E+A)
-1
][(E—A)(E+A)
-1
]
T
=[(E—A)(E+A)
-1
][(E+A)
-1
]
T
(E—A)
T
=(E—A)(E+A)
-1
(E—A)
-1
(E+A) =(E+A)
-1
(E—A)(E—A)
-1
(E+A), (利用(1)的结果(E—A)(E+A)
-1
=(E+A)(E—A))=E·E=E.) 故(E—A)(E+A)
-1
为正交矩阵. (Ⅲ)下证[(E—A)(E+A)
-1
]
T
=一(E一A)(E+A)
-1
.利用AA
T
=A
T
A=E及
-1
=A
T
得到 [(E—A)(E+A)
-1
]
T
=[(E+A)
-1
]
T
(E一A)
T
=[(E+A)
T
]
-1
(E—A
T
) =(E+A
T
)
-1
(E—A
T
)=(E+A
-1
)
-1
(E一A
-1
)=(A
-1
A+A
-1
)
-1
(E—A
-1
) =[A
-1
(A+E)]
-1
(E—A
-1
)=(A+E)
-1
A(E—A
-1
) =(A+E)
-1
(A—E)=一(A+E)
-1
(E—A)=一(E—A)(E+A)
-1
, (利用(Ⅰ)的结果(E+A)
-1
(E—A)=(E—A)(E+A)
-1
) 故(E—A)(E+A)
-1
为反对称矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/IPA4777K
0
考研数学二
相关试题推荐
计算I=ydχdy,其中D由曲线=1及χ轴和y轴围成,其中a>0,b>0.
设f(x)=3x2+Ax-3(x>0),A为正常数,问A至少为多少时,f(x)≥20?
设f(x)在[0,1]连续,且f(0)=f(1),证明至少存在一点ξ∈[0,1],使得f(ξ)=
当x≥0,证明∫0x(t-t2)sin2ntdt≤,其中n为自然数.
设A,B均为n阶矩阵,E+AB可逆,化简(E+BA)[E-B(E+AB)-1A].
设A=有三个线性无关的特征向量.求a;
已知下列非齐次线性方程组(I),(II):(1)求解方程组(I),用其导出组的基础解系表示通解;(2)当方程组中的参数m,n,t为何值时,方程组(I)与(Ⅱ)同解?
已知线性方程组方程组有解时,求出方程组的导出组的基础解系;
求不定积分
(2013年)设封闭曲线L的极坐标方程为r=cos3θ,则L所围平面图形的面积是________.
随机试题
简述捕食的概念及形式。
促使毛细血管把液体从血管外重吸收入血管内的力量是
甲根据乙的选择,向丙购买了一台大型设备,出租给乙使用。乙在该设备安装完毕后,发现不能正常运行。下列哪些判断是正确的?()
被人们称为“现存宗教音乐的顶峰”的是()。
临时中央政治局迁到中央根据地后,全面推行“左”倾冒险主义错误,在福建开展的运动是()。
在太阳能、风能、水能、核能中,目前唯一能替代化石燃料(煤、石油、天然气)并大规模使用的工业能源是核能。()
某些食品包装袋内有一小包物质,用来吸收氧气和水分,以防止食品腐烂,这种物质常被称为“双吸剂”。下列物质属于“双吸剂”的是:
Theprofileofthetypicalbusinessschoolapplicanthaschangedsignificantlyoverthepastdecade.Onceuponatime,fewwould
与Novell文件服务相关的文件存储概念是什么?如何配置代理服务器?
在窗体上画一个名称为Command1的命令按钮,编写如下事件过程:PrivateSubCommand1_Click() n=0 Fori=0To10 X=2*i-1 IfXMod3=0Thenn=n+1
最新回复
(
0
)