首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设为实矩阵,在下列条件中: ①|A|<0; ②b=c; ③a=d; ④r(A)=1. 能确定A可相似对角化的是( ).
设为实矩阵,在下列条件中: ①|A|<0; ②b=c; ③a=d; ④r(A)=1. 能确定A可相似对角化的是( ).
admin
2021-07-27
29
问题
设
为实矩阵,在下列条件中:
①|A|<0;
②b=c;
③a=d;
④r(A)=1.
能确定A可相似对角化的是( ).
选项
A、①,②
B、②,③
C、③,④
D、①,④
答案
A
解析
判断矩阵能否相似对角化有多个角度和条件,对n阶矩阵A而言,关键是看矩阵A是否有n个线性无关的特征向量,或对A的k重特征根λ
k
,是否有r(λ
k
E-A)=n-k.另外,A能够相似对角化的充分条件是A有n个互不相等的特征值或A为实对称矩阵.本题具体分析如下:
条件①|A|<0表明A的两个特征值异号,必不相等,因此,A能相似对角化;
条件②b=c表明A为实对称矩阵,也能相似对角化;
条件③a=d和条件④,r(A)=1,均不能说明A能相似对角化.综上分析,选项(A)正确.
转载请注明原文地址:https://kaotiyun.com/show/ITy4777K
0
考研数学二
相关试题推荐
幂级数的收敛域为()
证明可微的必要条件定理:设z=f(x,y)在点(x0,y0)处可微,则fx’(x0,y0)与fy’(x0,y0)都存在,且dx|(x0,y0)=fx’(x0,y0)△x+fy’(x0,y0)△y.
设f(a)=f(b)=0,∫abf2(x)dx=1,f’(x)∈C[a,b].证明:∫abf’2(x)dx∫abx2f2(x)dx≥
设A,B均为n阶矩阵,则必有()
设n(n≥3)阶矩阵若矩阵A的秩为n—1,则a必为()
设f(x)在[0.1]上二阶可导.且f(0)=f’(0)=f(1)=f’(1)=0.证明:方程f’’(x)-f(x)=0在(0.1)内有根.
设A为三阶矩阵,且Aαi=iαi(i=1,2,3),其中α1=(1,2,3)T,α2=(0,1,2)T,α3=(0,0,1)T,求A。
设y1(x)、y2(x)为二阶变系数齐次线性方程y"+p(x)y’+q(x)y=0的两个特解,则C1y1(x)+C2y2(x)(C1,C2为任意常数)是该方程通解的充分条件为
设考虑以下命题:其中正确的是()
已知α1,α2,α3,α4是线性方程组Ax=0的一个基础解系,若β1=α1+tα2,β2=α2+tα3,β3=α3+tα4,β4=α4+tα1,讨论实数t满足什么关系时,β1,β2,β3,β4也是Ax=0的一个基础解系?
随机试题
计算∫x2lnxdx.
A.循环超负荷B.过敏反应C.发热反应D.变态反应E.细菌污染反应输血时出现端坐呼吸,咳泡沫痰的是
131I治疗甲亢最适合于
甲、乙、丙三人共同伤害被害人丁,公安机关对丙作出撤销案件的处理,检察机关对甲提起公诉,对乙作了不起诉处理。被害人欲提起附带民事诉讼,下列说法哪些是正确的?()
下面是关于确定土地估价基本事项的有关描述,正确的是()。
矿用工字钢一般设计为()。
“备案号”栏:()。“集装箱号”栏:()。
首家金融理财的专业协会是()
下列有关细胞分化的叙述,正确的是()。
警察虽然随着国家的产生而产生,但是警察同国家不一样,它不是阶级矛盾不可调和的产物。()
最新回复
(
0
)